![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muladdmod | Structured version Visualization version GIF version |
Description: A real number is the sum of the number and a multiple of a positive real number modulo the positive real number. (Contributed by AV, 7-Sep-2025.) |
Ref | Expression |
---|---|
muladdmod | ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = (𝐴 mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12613 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
2 | 1 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
3 | rpre 13039 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ) | |
4 | 3 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
5 | 2, 4 | remulcld 11287 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝑀) ∈ ℝ) |
6 | simp1 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ) | |
7 | simp2 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ+) | |
8 | modaddmod 13946 | . . 3 ⊢ (((𝑁 · 𝑀) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((((𝑁 · 𝑀) mod 𝑀) + 𝐴) mod 𝑀) = (((𝑁 · 𝑀) + 𝐴) mod 𝑀)) | |
9 | 5, 6, 7, 8 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((((𝑁 · 𝑀) mod 𝑀) + 𝐴) mod 𝑀) = (((𝑁 · 𝑀) + 𝐴) mod 𝑀)) |
10 | pm3.22 459 | . . . . . . 7 ⊢ ((𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+)) | |
11 | 10 | 3adant1 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+)) |
12 | mulmod0 13913 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝑁 · 𝑀) mod 𝑀) = 0) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝑀) mod 𝑀) = 0) |
14 | 13 | oveq1d 7444 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (((𝑁 · 𝑀) mod 𝑀) + 𝐴) = (0 + 𝐴)) |
15 | recn 11241 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
16 | 15 | addlidd 11458 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) |
17 | 16 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (0 + 𝐴) = 𝐴) |
18 | 14, 17 | eqtrd 2776 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (((𝑁 · 𝑀) mod 𝑀) + 𝐴) = 𝐴) |
19 | 18 | oveq1d 7444 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((((𝑁 · 𝑀) mod 𝑀) + 𝐴) mod 𝑀) = (𝐴 mod 𝑀)) |
20 | 9, 19 | eqtr3d 2778 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = (𝐴 mod 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 (class class class)co 7429 ℝcr 11150 0cc0 11151 + caddc 11154 · cmul 11156 ℤcz 12609 ℝ+crp 13030 mod cmo 13905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-sup 9478 df-inf 9479 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-n0 12523 df-z 12610 df-uz 12875 df-rp 13031 df-fl 13828 df-mod 13906 |
This theorem is referenced by: ceil5half3 47315 |
Copyright terms: Public domain | W3C validator |