Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulmod0 | Structured version Visualization version GIF version |
Description: The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) (Revised by AV, 5-Jul-2020.) |
Ref | Expression |
---|---|
mulmod0 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · 𝑀) mod 𝑀) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12181 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
2 | 1 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ) |
3 | rpcn 12596 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ) | |
4 | 3 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℂ) |
5 | rpne0 12602 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ≠ 0) | |
6 | 5 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ≠ 0) |
7 | 2, 4, 6 | divcan4d 11614 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · 𝑀) / 𝑀) = 𝐴) |
8 | simpl 486 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℤ) | |
9 | 7, 8 | eqeltrd 2838 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · 𝑀) / 𝑀) ∈ ℤ) |
10 | zre 12180 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
11 | rpre 12594 | . . . 4 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ) | |
12 | remulcl 10814 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐴 · 𝑀) ∈ ℝ) | |
13 | 10, 11, 12 | syl2an 599 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 · 𝑀) ∈ ℝ) |
14 | mod0 13449 | . . 3 ⊢ (((𝐴 · 𝑀) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 · 𝑀) mod 𝑀) = 0 ↔ ((𝐴 · 𝑀) / 𝑀) ∈ ℤ)) | |
15 | 13, 14 | sylancom 591 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐴 · 𝑀) mod 𝑀) = 0 ↔ ((𝐴 · 𝑀) / 𝑀) ∈ ℤ)) |
16 | 9, 15 | mpbird 260 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · 𝑀) mod 𝑀) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 · cmul 10734 / cdiv 11489 ℤcz 12176 ℝ+crp 12586 mod cmo 13442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fl 13367 df-mod 13443 |
This theorem is referenced by: mulp1mod1 13485 mod2eq1n2dvds 15908 modprm0 16358 2lgslem3a1 26281 2lgslem3d1 26284 |
Copyright terms: Public domain | W3C validator |