| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceil5half3 | Structured version Visualization version GIF version | ||
| Description: The ceiling of half of 5 is 3. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceil5half3 | ⊢ (⌈‘(5 / 2)) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 12207 | . . 3 ⊢ 5 ∈ ℝ | |
| 2 | 2rp 12890 | . . 3 ⊢ 2 ∈ ℝ+ | |
| 3 | ceildivmod 47370 | . . 3 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ+) → (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2) |
| 5 | df-6 12187 | . . . . 5 ⊢ 6 = (5 + 1) | |
| 6 | 3t2e6 12281 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 7 | 2t2e4 12279 | . . . . . . . . . 10 ⊢ (2 · 2) = 4 | |
| 8 | 7 | oveq1i 7351 | . . . . . . . . 9 ⊢ ((2 · 2) + (2 − 5)) = (4 + (2 − 5)) |
| 9 | 4cn 12205 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 10 | 2cn 12195 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 11 | 5cn 12208 | . . . . . . . . . 10 ⊢ 5 ∈ ℂ | |
| 12 | 9, 10, 11 | addsubassi 11447 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = (4 + (2 − 5)) |
| 13 | ax-1cn 11059 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 14 | 4p2e6 12268 | . . . . . . . . . . 11 ⊢ (4 + 2) = 6 | |
| 15 | 14, 5 | eqtri 2754 | . . . . . . . . . 10 ⊢ (4 + 2) = (5 + 1) |
| 16 | 11, 13, 15 | mvrladdi 11373 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = 1 |
| 17 | 8, 12, 16 | 3eqtr2i 2760 | . . . . . . . 8 ⊢ ((2 · 2) + (2 − 5)) = 1 |
| 18 | 17 | oveq1i 7351 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = (1 mod 2) |
| 19 | 2re 12194 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 20 | 19, 1 | resubcli 11418 | . . . . . . . 8 ⊢ (2 − 5) ∈ ℝ |
| 21 | 2z 12499 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 22 | muladdmod 13814 | . . . . . . . 8 ⊢ (((2 − 5) ∈ ℝ ∧ 2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2)) | |
| 23 | 20, 2, 21, 22 | mp3an 1463 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2) |
| 24 | 1lt2 12286 | . . . . . . . 8 ⊢ 1 < 2 | |
| 25 | 1mod 13802 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1) | |
| 26 | 19, 24, 25 | mp2an 692 | . . . . . . 7 ⊢ (1 mod 2) = 1 |
| 27 | 18, 23, 26 | 3eqtr3i 2762 | . . . . . 6 ⊢ ((2 − 5) mod 2) = 1 |
| 28 | 27 | oveq2i 7352 | . . . . 5 ⊢ (5 + ((2 − 5) mod 2)) = (5 + 1) |
| 29 | 5, 6, 28 | 3eqtr4ri 2765 | . . . 4 ⊢ (5 + ((2 − 5) mod 2)) = (3 · 2) |
| 30 | 29 | oveq1i 7351 | . . 3 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = ((3 · 2) / 2) |
| 31 | 3cn 12201 | . . . 4 ⊢ 3 ∈ ℂ | |
| 32 | 2ne0 12224 | . . . 4 ⊢ 2 ≠ 0 | |
| 33 | 31, 10, 32 | divcan4i 11863 | . . 3 ⊢ ((3 · 2) / 2) = 3 |
| 34 | 30, 33 | eqtri 2754 | . 2 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = 3 |
| 35 | 4, 34 | eqtri 2754 | 1 ⊢ (⌈‘(5 / 2)) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 1c1 11002 + caddc 11004 · cmul 11006 < clt 11141 − cmin 11339 / cdiv 11769 2c2 12175 3c3 12176 4c4 12177 5c5 12178 6c6 12179 ℤcz 12463 ℝ+crp 12885 ⌈cceil 13690 mod cmo 13768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fl 13691 df-ceil 13692 df-mod 13769 |
| This theorem is referenced by: gpg5order 48091 gpg5nbgrvtx13starlem2 48103 gpg5gricstgr3 48121 pglem 48122 gpg5grlim 48124 gpg5grlic 48125 |
| Copyright terms: Public domain | W3C validator |