| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceil5half3 | Structured version Visualization version GIF version | ||
| Description: The ceiling of half of 5 is 3. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceil5half3 | ⊢ (⌈‘(5 / 2)) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 12349 | . . 3 ⊢ 5 ∈ ℝ | |
| 2 | 2rp 13035 | . . 3 ⊢ 2 ∈ ℝ+ | |
| 3 | ceildivmod 47314 | . . 3 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ+) → (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2) |
| 5 | df-6 12329 | . . . . 5 ⊢ 6 = (5 + 1) | |
| 6 | 3t2e6 12428 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 7 | 2t2e4 12426 | . . . . . . . . . 10 ⊢ (2 · 2) = 4 | |
| 8 | 7 | oveq1i 7439 | . . . . . . . . 9 ⊢ ((2 · 2) + (2 − 5)) = (4 + (2 − 5)) |
| 9 | 4cn 12347 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 10 | 2cn 12337 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 11 | 5cn 12350 | . . . . . . . . . 10 ⊢ 5 ∈ ℂ | |
| 12 | 9, 10, 11 | addsubassi 11596 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = (4 + (2 − 5)) |
| 13 | ax-1cn 11209 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 14 | 4p2e6 12415 | . . . . . . . . . . 11 ⊢ (4 + 2) = 6 | |
| 15 | 14, 5 | eqtri 2764 | . . . . . . . . . 10 ⊢ (4 + 2) = (5 + 1) |
| 16 | 11, 13, 15 | mvrladdi 11522 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = 1 |
| 17 | 8, 12, 16 | 3eqtr2i 2770 | . . . . . . . 8 ⊢ ((2 · 2) + (2 − 5)) = 1 |
| 18 | 17 | oveq1i 7439 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = (1 mod 2) |
| 19 | 2re 12336 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 20 | 19, 1 | resubcli 11567 | . . . . . . . 8 ⊢ (2 − 5) ∈ ℝ |
| 21 | 2z 12645 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 22 | muladdmod 13949 | . . . . . . . 8 ⊢ (((2 − 5) ∈ ℝ ∧ 2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2)) | |
| 23 | 20, 2, 21, 22 | mp3an 1463 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2) |
| 24 | 1lt2 12433 | . . . . . . . 8 ⊢ 1 < 2 | |
| 25 | 1mod 13939 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1) | |
| 26 | 19, 24, 25 | mp2an 692 | . . . . . . 7 ⊢ (1 mod 2) = 1 |
| 27 | 18, 23, 26 | 3eqtr3i 2772 | . . . . . 6 ⊢ ((2 − 5) mod 2) = 1 |
| 28 | 27 | oveq2i 7440 | . . . . 5 ⊢ (5 + ((2 − 5) mod 2)) = (5 + 1) |
| 29 | 5, 6, 28 | 3eqtr4ri 2775 | . . . 4 ⊢ (5 + ((2 − 5) mod 2)) = (3 · 2) |
| 30 | 29 | oveq1i 7439 | . . 3 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = ((3 · 2) / 2) |
| 31 | 3cn 12343 | . . . 4 ⊢ 3 ∈ ℂ | |
| 32 | 2ne0 12366 | . . . 4 ⊢ 2 ≠ 0 | |
| 33 | 31, 10, 32 | divcan4i 12010 | . . 3 ⊢ ((3 · 2) / 2) = 3 |
| 34 | 30, 33 | eqtri 2764 | . 2 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = 3 |
| 35 | 4, 34 | eqtri 2764 | 1 ⊢ (⌈‘(5 / 2)) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 ℝcr 11150 1c1 11152 + caddc 11154 · cmul 11156 < clt 11291 − cmin 11488 / cdiv 11916 2c2 12317 3c3 12318 4c4 12319 5c5 12320 6c6 12321 ℤcz 12609 ℝ+crp 13030 ⌈cceil 13827 mod cmo 13905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-sup 9478 df-inf 9479 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-n0 12523 df-z 12610 df-uz 12875 df-rp 13031 df-fl 13828 df-ceil 13829 df-mod 13906 |
| This theorem is referenced by: gpg5order 47987 gpg5nbgrvtx13starlem2 48001 gpg5gricstgr3 48019 gpg5grlic 48020 |
| Copyright terms: Public domain | W3C validator |