| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceil5half3 | Structured version Visualization version GIF version | ||
| Description: The ceiling of half of 5 is 3. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceil5half3 | ⊢ (⌈‘(5 / 2)) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 12274 | . . 3 ⊢ 5 ∈ ℝ | |
| 2 | 2rp 12962 | . . 3 ⊢ 2 ∈ ℝ+ | |
| 3 | ceildivmod 47330 | . . 3 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ+) → (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2) |
| 5 | df-6 12254 | . . . . 5 ⊢ 6 = (5 + 1) | |
| 6 | 3t2e6 12353 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 7 | 2t2e4 12351 | . . . . . . . . . 10 ⊢ (2 · 2) = 4 | |
| 8 | 7 | oveq1i 7399 | . . . . . . . . 9 ⊢ ((2 · 2) + (2 − 5)) = (4 + (2 − 5)) |
| 9 | 4cn 12272 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 10 | 2cn 12262 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 11 | 5cn 12275 | . . . . . . . . . 10 ⊢ 5 ∈ ℂ | |
| 12 | 9, 10, 11 | addsubassi 11519 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = (4 + (2 − 5)) |
| 13 | ax-1cn 11132 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 14 | 4p2e6 12340 | . . . . . . . . . . 11 ⊢ (4 + 2) = 6 | |
| 15 | 14, 5 | eqtri 2753 | . . . . . . . . . 10 ⊢ (4 + 2) = (5 + 1) |
| 16 | 11, 13, 15 | mvrladdi 11445 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = 1 |
| 17 | 8, 12, 16 | 3eqtr2i 2759 | . . . . . . . 8 ⊢ ((2 · 2) + (2 − 5)) = 1 |
| 18 | 17 | oveq1i 7399 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = (1 mod 2) |
| 19 | 2re 12261 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 20 | 19, 1 | resubcli 11490 | . . . . . . . 8 ⊢ (2 − 5) ∈ ℝ |
| 21 | 2z 12571 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 22 | muladdmod 13883 | . . . . . . . 8 ⊢ (((2 − 5) ∈ ℝ ∧ 2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2)) | |
| 23 | 20, 2, 21, 22 | mp3an 1463 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2) |
| 24 | 1lt2 12358 | . . . . . . . 8 ⊢ 1 < 2 | |
| 25 | 1mod 13871 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1) | |
| 26 | 19, 24, 25 | mp2an 692 | . . . . . . 7 ⊢ (1 mod 2) = 1 |
| 27 | 18, 23, 26 | 3eqtr3i 2761 | . . . . . 6 ⊢ ((2 − 5) mod 2) = 1 |
| 28 | 27 | oveq2i 7400 | . . . . 5 ⊢ (5 + ((2 − 5) mod 2)) = (5 + 1) |
| 29 | 5, 6, 28 | 3eqtr4ri 2764 | . . . 4 ⊢ (5 + ((2 − 5) mod 2)) = (3 · 2) |
| 30 | 29 | oveq1i 7399 | . . 3 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = ((3 · 2) / 2) |
| 31 | 3cn 12268 | . . . 4 ⊢ 3 ∈ ℂ | |
| 32 | 2ne0 12291 | . . . 4 ⊢ 2 ≠ 0 | |
| 33 | 31, 10, 32 | divcan4i 11935 | . . 3 ⊢ ((3 · 2) / 2) = 3 |
| 34 | 30, 33 | eqtri 2753 | . 2 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = 3 |
| 35 | 4, 34 | eqtri 2753 | 1 ⊢ (⌈‘(5 / 2)) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 1c1 11075 + caddc 11077 · cmul 11079 < clt 11214 − cmin 11411 / cdiv 11841 2c2 12242 3c3 12243 4c4 12244 5c5 12245 6c6 12246 ℤcz 12535 ℝ+crp 12957 ⌈cceil 13759 mod cmo 13837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fl 13760 df-ceil 13761 df-mod 13838 |
| This theorem is referenced by: gpg5order 48041 gpg5nbgrvtx13starlem2 48053 gpg5gricstgr3 48071 pglem 48072 gpg5grlic 48074 |
| Copyright terms: Public domain | W3C validator |