![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ceil5half3 | Structured version Visualization version GIF version |
Description: The ceiling of half of 5 is 3. (Contributed by AV, 7-Sep-2025.) |
Ref | Expression |
---|---|
ceil5half3 | ⊢ (⌈‘(5 / 2)) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5re 12385 | . . 3 ⊢ 5 ∈ ℝ | |
2 | 2rp 13071 | . . 3 ⊢ 2 ∈ ℝ+ | |
3 | ceildivmod 47262 | . . 3 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ+) → (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2)) | |
4 | 1, 2, 3 | mp2an 691 | . 2 ⊢ (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2) |
5 | df-6 12365 | . . . . 5 ⊢ 6 = (5 + 1) | |
6 | 3t2e6 12464 | . . . . 5 ⊢ (3 · 2) = 6 | |
7 | 2t2e4 12462 | . . . . . . . . . 10 ⊢ (2 · 2) = 4 | |
8 | 7 | oveq1i 7461 | . . . . . . . . 9 ⊢ ((2 · 2) + (2 − 5)) = (4 + (2 − 5)) |
9 | 4cn 12383 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
10 | 2cn 12373 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
11 | 5cn 12386 | . . . . . . . . . 10 ⊢ 5 ∈ ℂ | |
12 | 9, 10, 11 | addsubassi 11632 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = (4 + (2 − 5)) |
13 | ax-1cn 11245 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
14 | 4p2e6 12451 | . . . . . . . . . . 11 ⊢ (4 + 2) = 6 | |
15 | 14, 5 | eqtri 2768 | . . . . . . . . . 10 ⊢ (4 + 2) = (5 + 1) |
16 | 11, 13, 15 | mvrladdi 11558 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = 1 |
17 | 8, 12, 16 | 3eqtr2i 2774 | . . . . . . . 8 ⊢ ((2 · 2) + (2 − 5)) = 1 |
18 | 17 | oveq1i 7461 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = (1 mod 2) |
19 | 2re 12372 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
20 | 19, 1 | resubcli 11603 | . . . . . . . 8 ⊢ (2 − 5) ∈ ℝ |
21 | 2z 12681 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
22 | muladdmod 13980 | . . . . . . . 8 ⊢ (((2 − 5) ∈ ℝ ∧ 2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2)) | |
23 | 20, 2, 21, 22 | mp3an 1461 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2) |
24 | 1lt2 12469 | . . . . . . . 8 ⊢ 1 < 2 | |
25 | 1mod 13970 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1) | |
26 | 19, 24, 25 | mp2an 691 | . . . . . . 7 ⊢ (1 mod 2) = 1 |
27 | 18, 23, 26 | 3eqtr3i 2776 | . . . . . 6 ⊢ ((2 − 5) mod 2) = 1 |
28 | 27 | oveq2i 7462 | . . . . 5 ⊢ (5 + ((2 − 5) mod 2)) = (5 + 1) |
29 | 5, 6, 28 | 3eqtr4ri 2779 | . . . 4 ⊢ (5 + ((2 − 5) mod 2)) = (3 · 2) |
30 | 29 | oveq1i 7461 | . . 3 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = ((3 · 2) / 2) |
31 | 3cn 12379 | . . . 4 ⊢ 3 ∈ ℂ | |
32 | 2ne0 12402 | . . . 4 ⊢ 2 ≠ 0 | |
33 | 31, 10, 32 | divcan4i 12046 | . . 3 ⊢ ((3 · 2) / 2) = 3 |
34 | 30, 33 | eqtri 2768 | . 2 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = 3 |
35 | 4, 34 | eqtri 2768 | 1 ⊢ (⌈‘(5 / 2)) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 class class class wbr 5167 ‘cfv 6576 (class class class)co 7451 ℝcr 11186 1c1 11188 + caddc 11190 · cmul 11192 < clt 11327 − cmin 11524 / cdiv 11952 2c2 12353 3c3 12354 4c4 12355 5c5 12356 6c6 12357 ℤcz 12645 ℝ+crp 13066 ⌈cceil 13858 mod cmo 13936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-sup 9514 df-inf 9515 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-n0 12559 df-z 12646 df-uz 12911 df-rp 13067 df-fl 13859 df-ceil 13860 df-mod 13937 |
This theorem is referenced by: gpg5nbgrvtx13starlem2 47915 |
Copyright terms: Public domain | W3C validator |