| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceil5half3 | Structured version Visualization version GIF version | ||
| Description: The ceiling of half of 5 is 3. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceil5half3 | ⊢ (⌈‘(5 / 2)) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 12234 | . . 3 ⊢ 5 ∈ ℝ | |
| 2 | 2rp 12917 | . . 3 ⊢ 2 ∈ ℝ+ | |
| 3 | ceildivmod 47343 | . . 3 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ+) → (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2) |
| 5 | df-6 12214 | . . . . 5 ⊢ 6 = (5 + 1) | |
| 6 | 3t2e6 12308 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 7 | 2t2e4 12306 | . . . . . . . . . 10 ⊢ (2 · 2) = 4 | |
| 8 | 7 | oveq1i 7363 | . . . . . . . . 9 ⊢ ((2 · 2) + (2 − 5)) = (4 + (2 − 5)) |
| 9 | 4cn 12232 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 10 | 2cn 12222 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 11 | 5cn 12235 | . . . . . . . . . 10 ⊢ 5 ∈ ℂ | |
| 12 | 9, 10, 11 | addsubassi 11474 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = (4 + (2 − 5)) |
| 13 | ax-1cn 11086 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 14 | 4p2e6 12295 | . . . . . . . . . . 11 ⊢ (4 + 2) = 6 | |
| 15 | 14, 5 | eqtri 2752 | . . . . . . . . . 10 ⊢ (4 + 2) = (5 + 1) |
| 16 | 11, 13, 15 | mvrladdi 11400 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = 1 |
| 17 | 8, 12, 16 | 3eqtr2i 2758 | . . . . . . . 8 ⊢ ((2 · 2) + (2 − 5)) = 1 |
| 18 | 17 | oveq1i 7363 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = (1 mod 2) |
| 19 | 2re 12221 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 20 | 19, 1 | resubcli 11445 | . . . . . . . 8 ⊢ (2 − 5) ∈ ℝ |
| 21 | 2z 12526 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 22 | muladdmod 13838 | . . . . . . . 8 ⊢ (((2 − 5) ∈ ℝ ∧ 2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2)) | |
| 23 | 20, 2, 21, 22 | mp3an 1463 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2) |
| 24 | 1lt2 12313 | . . . . . . . 8 ⊢ 1 < 2 | |
| 25 | 1mod 13826 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1) | |
| 26 | 19, 24, 25 | mp2an 692 | . . . . . . 7 ⊢ (1 mod 2) = 1 |
| 27 | 18, 23, 26 | 3eqtr3i 2760 | . . . . . 6 ⊢ ((2 − 5) mod 2) = 1 |
| 28 | 27 | oveq2i 7364 | . . . . 5 ⊢ (5 + ((2 − 5) mod 2)) = (5 + 1) |
| 29 | 5, 6, 28 | 3eqtr4ri 2763 | . . . 4 ⊢ (5 + ((2 − 5) mod 2)) = (3 · 2) |
| 30 | 29 | oveq1i 7363 | . . 3 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = ((3 · 2) / 2) |
| 31 | 3cn 12228 | . . . 4 ⊢ 3 ∈ ℂ | |
| 32 | 2ne0 12251 | . . . 4 ⊢ 2 ≠ 0 | |
| 33 | 31, 10, 32 | divcan4i 11890 | . . 3 ⊢ ((3 · 2) / 2) = 3 |
| 34 | 30, 33 | eqtri 2752 | . 2 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = 3 |
| 35 | 4, 34 | eqtri 2752 | 1 ⊢ (⌈‘(5 / 2)) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 − cmin 11366 / cdiv 11796 2c2 12202 3c3 12203 4c4 12204 5c5 12205 6c6 12206 ℤcz 12490 ℝ+crp 12912 ⌈cceil 13714 mod cmo 13792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-fl 13715 df-ceil 13716 df-mod 13793 |
| This theorem is referenced by: gpg5order 48064 gpg5nbgrvtx13starlem2 48076 gpg5gricstgr3 48094 pglem 48095 gpg5grlim 48097 gpg5grlic 48098 |
| Copyright terms: Public domain | W3C validator |