| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceil5half3 | Structured version Visualization version GIF version | ||
| Description: The ceiling of half of 5 is 3. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| ceil5half3 | ⊢ (⌈‘(5 / 2)) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 12249 | . . 3 ⊢ 5 ∈ ℝ | |
| 2 | 2rp 12932 | . . 3 ⊢ 2 ∈ ℝ+ | |
| 3 | ceildivmod 47313 | . . 3 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ+) → (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (⌈‘(5 / 2)) = ((5 + ((2 − 5) mod 2)) / 2) |
| 5 | df-6 12229 | . . . . 5 ⊢ 6 = (5 + 1) | |
| 6 | 3t2e6 12323 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 7 | 2t2e4 12321 | . . . . . . . . . 10 ⊢ (2 · 2) = 4 | |
| 8 | 7 | oveq1i 7379 | . . . . . . . . 9 ⊢ ((2 · 2) + (2 − 5)) = (4 + (2 − 5)) |
| 9 | 4cn 12247 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 10 | 2cn 12237 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 11 | 5cn 12250 | . . . . . . . . . 10 ⊢ 5 ∈ ℂ | |
| 12 | 9, 10, 11 | addsubassi 11489 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = (4 + (2 − 5)) |
| 13 | ax-1cn 11102 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 14 | 4p2e6 12310 | . . . . . . . . . . 11 ⊢ (4 + 2) = 6 | |
| 15 | 14, 5 | eqtri 2752 | . . . . . . . . . 10 ⊢ (4 + 2) = (5 + 1) |
| 16 | 11, 13, 15 | mvrladdi 11415 | . . . . . . . . 9 ⊢ ((4 + 2) − 5) = 1 |
| 17 | 8, 12, 16 | 3eqtr2i 2758 | . . . . . . . 8 ⊢ ((2 · 2) + (2 − 5)) = 1 |
| 18 | 17 | oveq1i 7379 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = (1 mod 2) |
| 19 | 2re 12236 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 20 | 19, 1 | resubcli 11460 | . . . . . . . 8 ⊢ (2 − 5) ∈ ℝ |
| 21 | 2z 12541 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 22 | muladdmod 13853 | . . . . . . . 8 ⊢ (((2 − 5) ∈ ℝ ∧ 2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2)) | |
| 23 | 20, 2, 21, 22 | mp3an 1463 | . . . . . . 7 ⊢ (((2 · 2) + (2 − 5)) mod 2) = ((2 − 5) mod 2) |
| 24 | 1lt2 12328 | . . . . . . . 8 ⊢ 1 < 2 | |
| 25 | 1mod 13841 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1) | |
| 26 | 19, 24, 25 | mp2an 692 | . . . . . . 7 ⊢ (1 mod 2) = 1 |
| 27 | 18, 23, 26 | 3eqtr3i 2760 | . . . . . 6 ⊢ ((2 − 5) mod 2) = 1 |
| 28 | 27 | oveq2i 7380 | . . . . 5 ⊢ (5 + ((2 − 5) mod 2)) = (5 + 1) |
| 29 | 5, 6, 28 | 3eqtr4ri 2763 | . . . 4 ⊢ (5 + ((2 − 5) mod 2)) = (3 · 2) |
| 30 | 29 | oveq1i 7379 | . . 3 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = ((3 · 2) / 2) |
| 31 | 3cn 12243 | . . . 4 ⊢ 3 ∈ ℂ | |
| 32 | 2ne0 12266 | . . . 4 ⊢ 2 ≠ 0 | |
| 33 | 31, 10, 32 | divcan4i 11905 | . . 3 ⊢ ((3 · 2) / 2) = 3 |
| 34 | 30, 33 | eqtri 2752 | . 2 ⊢ ((5 + ((2 − 5) mod 2)) / 2) = 3 |
| 35 | 4, 34 | eqtri 2752 | 1 ⊢ (⌈‘(5 / 2)) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 − cmin 11381 / cdiv 11811 2c2 12217 3c3 12218 4c4 12219 5c5 12220 6c6 12221 ℤcz 12505 ℝ+crp 12927 ⌈cceil 13729 mod cmo 13807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-ceil 13731 df-mod 13808 |
| This theorem is referenced by: gpg5order 48024 gpg5nbgrvtx13starlem2 48036 gpg5gricstgr3 48054 pglem 48055 gpg5grlic 48057 |
| Copyright terms: Public domain | W3C validator |