Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashss | Structured version Visualization version GIF version |
Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
Ref | Expression |
---|---|
hashss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8741 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
2 | 1 | com12 32 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∈ Fin → 𝐵 ≼ 𝐴)) |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∈ Fin → 𝐵 ≼ 𝐴)) |
4 | 3 | impcom 407 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ≼ 𝐴) |
5 | ssfi 8918 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
6 | 5 | adantrl 712 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
7 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐴 ∈ Fin) | |
8 | hashdom 14022 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
9 | 6, 7, 8 | syl2anc 583 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
10 | 4, 9 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → (♯‘𝐵) ≤ (♯‘𝐴)) |
11 | 10 | ex 412 | . 2 ⊢ (𝐴 ∈ Fin → ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))) |
12 | hashinf 13977 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
13 | ssexg 5242 | . . . . . . . . . . . 12 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐵 ∈ V) | |
14 | 13 | ancoms 458 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
15 | hashxrcl 14000 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
16 | pnfge 12795 | . . . . . . . . . . 11 ⊢ ((♯‘𝐵) ∈ ℝ* → (♯‘𝐵) ≤ +∞) | |
17 | 14, 15, 16 | 3syl 18 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ +∞) |
18 | 17 | ex 412 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ +∞)) |
19 | 18 | adantl 481 | . . . . . . . 8 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ +∞)) |
20 | breq2 5074 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = +∞ → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞)) | |
21 | 20 | adantr 480 | . . . . . . . 8 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞)) |
22 | 19, 21 | sylibrd 258 | . . . . . . 7 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))) |
23 | 22 | expcom 413 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = +∞ → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))) |
24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = +∞ → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))) |
25 | 12, 24 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))) |
26 | 25 | impancom 451 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (¬ 𝐴 ∈ Fin → (♯‘𝐵) ≤ (♯‘𝐴))) |
27 | 26 | com12 32 | . 2 ⊢ (¬ 𝐴 ∈ Fin → ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))) |
28 | 11, 27 | pm2.61i 182 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 ≼ cdom 8689 Fincfn 8691 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: prsshashgt1 14053 hashin 14054 nehash2 14116 isnzr2hash 20448 nbfusgrlevtxm1 27647 nbfusgrlevtxm2 27648 konigsberglem5 28521 cycpmconjslem2 31324 lssdimle 31593 hashf1dmcdm 32976 poimirlem9 35713 hashssle 42727 fourierdlem102 43639 fourierdlem114 43651 |
Copyright terms: Public domain | W3C validator |