MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashss Structured version   Visualization version   GIF version

Theorem hashss 14381
Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.)
Assertion
Ref Expression
hashss ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))

Proof of Theorem hashss
StepHypRef Expression
1 ssdomg 8974 . . . . . . 7 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
21com12 32 . . . . . 6 (𝐵𝐴 → (𝐴 ∈ Fin → 𝐵𝐴))
32adantl 481 . . . . 5 ((𝐴𝑉𝐵𝐴) → (𝐴 ∈ Fin → 𝐵𝐴))
43impcom 407 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → 𝐵𝐴)
5 ssfi 9143 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
65adantrl 716 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → 𝐵 ∈ Fin)
7 simpl 482 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → 𝐴 ∈ Fin)
8 hashdom 14351 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵𝐴))
96, 7, 8syl2anc 584 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵𝐴))
104, 9mpbird 257 . . 3 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → (♯‘𝐵) ≤ (♯‘𝐴))
1110ex 412 . 2 (𝐴 ∈ Fin → ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)))
12 hashinf 14307 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
13 ssexg 5281 . . . . . . . . . . . 12 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
1413ancoms 458 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
15 hashxrcl 14329 . . . . . . . . . . 11 (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*)
16 pnfge 13097 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℝ* → (♯‘𝐵) ≤ +∞)
1714, 15, 163syl 18 . . . . . . . . . 10 ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ +∞)
1817ex 412 . . . . . . . . 9 (𝐴𝑉 → (𝐵𝐴 → (♯‘𝐵) ≤ +∞))
1918adantl 481 . . . . . . . 8 (((♯‘𝐴) = +∞ ∧ 𝐴𝑉) → (𝐵𝐴 → (♯‘𝐵) ≤ +∞))
20 breq2 5114 . . . . . . . . 9 ((♯‘𝐴) = +∞ → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞))
2120adantr 480 . . . . . . . 8 (((♯‘𝐴) = +∞ ∧ 𝐴𝑉) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞))
2219, 21sylibrd 259 . . . . . . 7 (((♯‘𝐴) = +∞ ∧ 𝐴𝑉) → (𝐵𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))
2322expcom 413 . . . . . 6 (𝐴𝑉 → ((♯‘𝐴) = +∞ → (𝐵𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))))
2423adantr 480 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = +∞ → (𝐵𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))))
2512, 24mpd 15 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝐵𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))
2625impancom 451 . . 3 ((𝐴𝑉𝐵𝐴) → (¬ 𝐴 ∈ Fin → (♯‘𝐵) ≤ (♯‘𝐴)))
2726com12 32 . 2 𝐴 ∈ Fin → ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)))
2811, 27pm2.61i 182 1 ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110  cfv 6514  cdom 8919  Fincfn 8921  +∞cpnf 11212  *cxr 11214  cle 11216  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  prsshashgt1  14382  hashin  14383  hashf1dmcdm  14416  nehash2  14446  isnzr2hash  20435  nbfusgrlevtxm1  29311  nbfusgrlevtxm2  29312  konigsberglem5  30192  hashpss  32741  cycpmconjslem2  33119  lbslelsp  33600  lssdimle  33610  poimirlem9  37630  aks6d1c4  42119  aks6d1c2lem4  42122  aks6d1c6lem2  42166  aks6d1c6lem3  42167  unitscyglem1  42190  unitscyglem5  42194  hashssle  45303  fourierdlem102  46213  fourierdlem114  46225  clnbgrlevtx  47849
  Copyright terms: Public domain W3C validator