MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashss Structured version   Visualization version   GIF version

Theorem hashss 14374
Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.)
Assertion
Ref Expression
hashss ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))

Proof of Theorem hashss
StepHypRef Expression
1 ssdomg 8971 . . . . . . 7 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
21com12 32 . . . . . 6 (𝐵𝐴 → (𝐴 ∈ Fin → 𝐵𝐴))
32adantl 481 . . . . 5 ((𝐴𝑉𝐵𝐴) → (𝐴 ∈ Fin → 𝐵𝐴))
43impcom 407 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → 𝐵𝐴)
5 ssfi 9137 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
65adantrl 716 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → 𝐵 ∈ Fin)
7 simpl 482 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → 𝐴 ∈ Fin)
8 hashdom 14344 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵𝐴))
96, 7, 8syl2anc 584 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵𝐴))
104, 9mpbird 257 . . 3 ((𝐴 ∈ Fin ∧ (𝐴𝑉𝐵𝐴)) → (♯‘𝐵) ≤ (♯‘𝐴))
1110ex 412 . 2 (𝐴 ∈ Fin → ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)))
12 hashinf 14300 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
13 ssexg 5278 . . . . . . . . . . . 12 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
1413ancoms 458 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
15 hashxrcl 14322 . . . . . . . . . . 11 (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*)
16 pnfge 13090 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℝ* → (♯‘𝐵) ≤ +∞)
1714, 15, 163syl 18 . . . . . . . . . 10 ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ +∞)
1817ex 412 . . . . . . . . 9 (𝐴𝑉 → (𝐵𝐴 → (♯‘𝐵) ≤ +∞))
1918adantl 481 . . . . . . . 8 (((♯‘𝐴) = +∞ ∧ 𝐴𝑉) → (𝐵𝐴 → (♯‘𝐵) ≤ +∞))
20 breq2 5111 . . . . . . . . 9 ((♯‘𝐴) = +∞ → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞))
2120adantr 480 . . . . . . . 8 (((♯‘𝐴) = +∞ ∧ 𝐴𝑉) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞))
2219, 21sylibrd 259 . . . . . . 7 (((♯‘𝐴) = +∞ ∧ 𝐴𝑉) → (𝐵𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))
2322expcom 413 . . . . . 6 (𝐴𝑉 → ((♯‘𝐴) = +∞ → (𝐵𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))))
2423adantr 480 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = +∞ → (𝐵𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))))
2512, 24mpd 15 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝐵𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))
2625impancom 451 . . 3 ((𝐴𝑉𝐵𝐴) → (¬ 𝐴 ∈ Fin → (♯‘𝐵) ≤ (♯‘𝐴)))
2726com12 32 . 2 𝐴 ∈ Fin → ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)))
2811, 27pm2.61i 182 1 ((𝐴𝑉𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   class class class wbr 5107  cfv 6511  cdom 8916  Fincfn 8918  +∞cpnf 11205  *cxr 11207  cle 11209  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  prsshashgt1  14375  hashin  14376  hashf1dmcdm  14409  nehash2  14439  isnzr2hash  20428  nbfusgrlevtxm1  29304  nbfusgrlevtxm2  29305  konigsberglem5  30185  hashpss  32734  cycpmconjslem2  33112  lbslelsp  33593  lssdimle  33603  poimirlem9  37623  aks6d1c4  42112  aks6d1c2lem4  42115  aks6d1c6lem2  42159  aks6d1c6lem3  42160  unitscyglem1  42183  unitscyglem5  42187  hashssle  45296  fourierdlem102  46206  fourierdlem114  46218  clnbgrlevtx  47845
  Copyright terms: Public domain W3C validator