![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashss | Structured version Visualization version GIF version |
Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
Ref | Expression |
---|---|
hashss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8350 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
2 | 1 | com12 32 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∈ Fin → 𝐵 ≼ 𝐴)) |
3 | 2 | adantl 474 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∈ Fin → 𝐵 ≼ 𝐴)) |
4 | 3 | impcom 399 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ≼ 𝐴) |
5 | ssfi 8531 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
6 | 5 | adantrl 703 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
7 | simpl 475 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐴 ∈ Fin) | |
8 | hashdom 13551 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
9 | 6, 7, 8 | syl2anc 576 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
10 | 4, 9 | mpbird 249 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → (♯‘𝐵) ≤ (♯‘𝐴)) |
11 | 10 | ex 405 | . 2 ⊢ (𝐴 ∈ Fin → ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))) |
12 | hashinf 13508 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
13 | ssexg 5079 | . . . . . . . . . . . 12 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐵 ∈ V) | |
14 | 13 | ancoms 451 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
15 | hashxrcl 13531 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
16 | pnfge 12340 | . . . . . . . . . . 11 ⊢ ((♯‘𝐵) ∈ ℝ* → (♯‘𝐵) ≤ +∞) | |
17 | 14, 15, 16 | 3syl 18 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ +∞) |
18 | 17 | ex 405 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ +∞)) |
19 | 18 | adantl 474 | . . . . . . . 8 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ +∞)) |
20 | breq2 4929 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = +∞ → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞)) | |
21 | 20 | adantr 473 | . . . . . . . 8 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞)) |
22 | 19, 21 | sylibrd 251 | . . . . . . 7 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))) |
23 | 22 | expcom 406 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = +∞ → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))) |
24 | 23 | adantr 473 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = +∞ → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))) |
25 | 12, 24 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))) |
26 | 25 | impancom 444 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (¬ 𝐴 ∈ Fin → (♯‘𝐵) ≤ (♯‘𝐴))) |
27 | 26 | com12 32 | . 2 ⊢ (¬ 𝐴 ∈ Fin → ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))) |
28 | 11, 27 | pm2.61i 177 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3409 ⊆ wss 3823 class class class wbr 4925 ‘cfv 6185 ≼ cdom 8302 Fincfn 8304 +∞cpnf 10469 ℝ*cxr 10471 ≤ cle 10473 ♯chash 13503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-n0 11706 df-xnn0 11778 df-z 11792 df-uz 12057 df-fz 12707 df-hash 13504 |
This theorem is referenced by: prsshashgt1 13582 hashin 13583 nehash2 13641 isnzr2hash 19770 nbfusgrlevtxm1 26874 nbfusgrlevtxm2 26875 konigsberglem5 27800 lssdimle 30664 poimirlem9 34371 hashssle 41019 fourierdlem102 41949 fourierdlem114 41961 |
Copyright terms: Public domain | W3C validator |