Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashss | Structured version Visualization version GIF version |
Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
Ref | Expression |
---|---|
hashss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8769 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
2 | 1 | com12 32 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∈ Fin → 𝐵 ≼ 𝐴)) |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∈ Fin → 𝐵 ≼ 𝐴)) |
4 | 3 | impcom 408 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ≼ 𝐴) |
5 | ssfi 8938 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
6 | 5 | adantrl 713 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
7 | simpl 483 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐴 ∈ Fin) | |
8 | hashdom 14092 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
9 | 6, 7, 8 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
10 | 4, 9 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → (♯‘𝐵) ≤ (♯‘𝐴)) |
11 | 10 | ex 413 | . 2 ⊢ (𝐴 ∈ Fin → ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))) |
12 | hashinf 14047 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
13 | ssexg 5251 | . . . . . . . . . . . 12 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐵 ∈ V) | |
14 | 13 | ancoms 459 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
15 | hashxrcl 14070 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
16 | pnfge 12865 | . . . . . . . . . . 11 ⊢ ((♯‘𝐵) ∈ ℝ* → (♯‘𝐵) ≤ +∞) | |
17 | 14, 15, 16 | 3syl 18 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ +∞) |
18 | 17 | ex 413 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ +∞)) |
19 | 18 | adantl 482 | . . . . . . . 8 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ +∞)) |
20 | breq2 5083 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = +∞ → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞)) | |
21 | 20 | adantr 481 | . . . . . . . 8 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞)) |
22 | 19, 21 | sylibrd 258 | . . . . . . 7 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))) |
23 | 22 | expcom 414 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = +∞ → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))) |
24 | 23 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = +∞ → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))) |
25 | 12, 24 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))) |
26 | 25 | impancom 452 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (¬ 𝐴 ∈ Fin → (♯‘𝐵) ≤ (♯‘𝐴))) |
27 | 26 | com12 32 | . 2 ⊢ (¬ 𝐴 ∈ Fin → ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))) |
28 | 11, 27 | pm2.61i 182 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 class class class wbr 5079 ‘cfv 6432 ≼ cdom 8714 Fincfn 8716 +∞cpnf 11007 ℝ*cxr 11009 ≤ cle 11011 ♯chash 14042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-oadd 8292 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12582 df-fz 13239 df-hash 14043 |
This theorem is referenced by: prsshashgt1 14123 hashin 14124 nehash2 14186 isnzr2hash 20533 nbfusgrlevtxm1 27742 nbfusgrlevtxm2 27743 konigsberglem5 28616 cycpmconjslem2 31418 lssdimle 31687 hashf1dmcdm 33072 poimirlem9 35782 hashssle 42808 fourierdlem102 43720 fourierdlem114 43732 |
Copyright terms: Public domain | W3C validator |