![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashss | Structured version Visualization version GIF version |
Description: The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
Ref | Expression |
---|---|
hashss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 9021 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
2 | 1 | com12 32 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∈ Fin → 𝐵 ≼ 𝐴)) |
3 | 2 | adantl 480 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∈ Fin → 𝐵 ≼ 𝐴)) |
4 | 3 | impcom 406 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ≼ 𝐴) |
5 | ssfi 9201 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
6 | 5 | adantrl 714 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ Fin) |
7 | simpl 481 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → 𝐴 ∈ Fin) | |
8 | hashdom 14379 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
9 | 6, 7, 8 | syl2anc 582 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
10 | 4, 9 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴)) → (♯‘𝐵) ≤ (♯‘𝐴)) |
11 | 10 | ex 411 | . 2 ⊢ (𝐴 ∈ Fin → ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))) |
12 | hashinf 14335 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
13 | ssexg 5324 | . . . . . . . . . . . 12 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐵 ∈ V) | |
14 | 13 | ancoms 457 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
15 | hashxrcl 14357 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
16 | pnfge 13150 | . . . . . . . . . . 11 ⊢ ((♯‘𝐵) ∈ ℝ* → (♯‘𝐵) ≤ +∞) | |
17 | 14, 15, 16 | 3syl 18 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ +∞) |
18 | 17 | ex 411 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ +∞)) |
19 | 18 | adantl 480 | . . . . . . . 8 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ +∞)) |
20 | breq2 5153 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = +∞ → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞)) | |
21 | 20 | adantr 479 | . . . . . . . 8 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → ((♯‘𝐵) ≤ (♯‘𝐴) ↔ (♯‘𝐵) ≤ +∞)) |
22 | 19, 21 | sylibrd 258 | . . . . . . 7 ⊢ (((♯‘𝐴) = +∞ ∧ 𝐴 ∈ 𝑉) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))) |
23 | 22 | expcom 412 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = +∞ → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))) |
24 | 23 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = +∞ → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴)))) |
25 | 12, 24 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝐵 ⊆ 𝐴 → (♯‘𝐵) ≤ (♯‘𝐴))) |
26 | 25 | impancom 450 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (¬ 𝐴 ∈ Fin → (♯‘𝐵) ≤ (♯‘𝐴))) |
27 | 26 | com12 32 | . 2 ⊢ (¬ 𝐴 ∈ Fin → ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))) |
28 | 11, 27 | pm2.61i 182 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ⊆ wss 3944 class class class wbr 5149 ‘cfv 6549 ≼ cdom 8962 Fincfn 8964 +∞cpnf 11282 ℝ*cxr 11284 ≤ cle 11286 ♯chash 14330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-hash 14331 |
This theorem is referenced by: prsshashgt1 14410 hashin 14411 hashf1dmcdm 14444 nehash2 14476 isnzr2hash 20475 nbfusgrlevtxm1 29267 nbfusgrlevtxm2 29268 konigsberglem5 30143 cycpmconjslem2 32973 lssdimle 33438 poimirlem9 37235 aks6d1c4 41729 aks6d1c2lem4 41732 aks6d1c6lem2 41776 aks6d1c6lem3 41777 hashssle 44820 fourierdlem102 45736 fourierdlem114 45748 clnbgrlevtx 47319 |
Copyright terms: Public domain | W3C validator |