MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1lem Structured version   Visualization version   GIF version

Theorem dcubic1lem 26753
Description: Lemma for dcubic1 26755 and dcubic2 26754: simplify the cubic equation under the substitution 𝑋 = 𝑈𝑀 / 𝑈. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c (𝜑𝑃 ∈ ℂ)
dcubic.d (𝜑𝑄 ∈ ℂ)
dcubic.x (𝜑𝑋 ∈ ℂ)
dcubic.t (𝜑𝑇 ∈ ℂ)
dcubic.3 (𝜑 → (𝑇↑3) = (𝐺𝑁))
dcubic.g (𝜑𝐺 ∈ ℂ)
dcubic.2 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
dcubic.m (𝜑𝑀 = (𝑃 / 3))
dcubic.n (𝜑𝑁 = (𝑄 / 2))
dcubic.0 (𝜑𝑇 ≠ 0)
dcubic2.u (𝜑𝑈 ∈ ℂ)
dcubic2.z (𝜑𝑈 ≠ 0)
dcubic2.2 (𝜑𝑋 = (𝑈 − (𝑀 / 𝑈)))
Assertion
Ref Expression
dcubic1lem (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0))

Proof of Theorem dcubic1lem
StepHypRef Expression
1 dcubic2.u . . . . . . . . 9 (𝜑𝑈 ∈ ℂ)
2 3nn0 12460 . . . . . . . . 9 3 ∈ ℕ0
3 expcl 14044 . . . . . . . . 9 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
41, 2, 3sylancl 586 . . . . . . . 8 (𝜑 → (𝑈↑3) ∈ ℂ)
54sqvald 14108 . . . . . . 7 (𝜑 → ((𝑈↑3)↑2) = ((𝑈↑3) · (𝑈↑3)))
65oveq1d 7402 . . . . . 6 (𝜑 → (((𝑈↑3)↑2) / (𝑈↑3)) = (((𝑈↑3) · (𝑈↑3)) / (𝑈↑3)))
7 dcubic2.z . . . . . . . 8 (𝜑𝑈 ≠ 0)
8 3z 12566 . . . . . . . . 9 3 ∈ ℤ
98a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℤ)
101, 7, 9expne0d 14117 . . . . . . 7 (𝜑 → (𝑈↑3) ≠ 0)
114, 4, 10divcan4d 11964 . . . . . 6 (𝜑 → (((𝑈↑3) · (𝑈↑3)) / (𝑈↑3)) = (𝑈↑3))
126, 11eqtr2d 2765 . . . . 5 (𝜑 → (𝑈↑3) = (((𝑈↑3)↑2) / (𝑈↑3)))
13 dcubic.d . . . . . . . 8 (𝜑𝑄 ∈ ℂ)
14 dcubic.m . . . . . . . . . . 11 (𝜑𝑀 = (𝑃 / 3))
15 dcubic.c . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
16 3cn 12267 . . . . . . . . . . . . 13 3 ∈ ℂ
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℂ)
18 3ne0 12292 . . . . . . . . . . . . 13 3 ≠ 0
1918a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ≠ 0)
2015, 17, 19divcld 11958 . . . . . . . . . . 11 (𝜑 → (𝑃 / 3) ∈ ℂ)
2114, 20eqeltrd 2828 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
22 expcl 14044 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
2321, 2, 22sylancl 586 . . . . . . . . 9 (𝜑 → (𝑀↑3) ∈ ℂ)
2423, 4, 10divcld 11958 . . . . . . . 8 (𝜑 → ((𝑀↑3) / (𝑈↑3)) ∈ ℂ)
2513, 24negsubd 11539 . . . . . . 7 (𝜑 → (𝑄 + -((𝑀↑3) / (𝑈↑3))) = (𝑄 − ((𝑀↑3) / (𝑈↑3))))
2613, 4, 10divcan4d 11964 . . . . . . . 8 (𝜑 → ((𝑄 · (𝑈↑3)) / (𝑈↑3)) = 𝑄)
2726oveq1d 7402 . . . . . . 7 (𝜑 → (((𝑄 · (𝑈↑3)) / (𝑈↑3)) − ((𝑀↑3) / (𝑈↑3))) = (𝑄 − ((𝑀↑3) / (𝑈↑3))))
2825, 27eqtr4d 2767 . . . . . 6 (𝜑 → (𝑄 + -((𝑀↑3) / (𝑈↑3))) = (((𝑄 · (𝑈↑3)) / (𝑈↑3)) − ((𝑀↑3) / (𝑈↑3))))
29 dcubic.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
3015, 29mulcld 11194 . . . . . . . . 9 (𝜑 → (𝑃 · 𝑋) ∈ ℂ)
3130negcld 11520 . . . . . . . 8 (𝜑 → -(𝑃 · 𝑋) ∈ ℂ)
3224negcld 11520 . . . . . . . 8 (𝜑 → -((𝑀↑3) / (𝑈↑3)) ∈ ℂ)
3331, 32, 30, 13add42d 11404 . . . . . . 7 (𝜑 → ((-(𝑃 · 𝑋) + -((𝑀↑3) / (𝑈↑3))) + ((𝑃 · 𝑋) + 𝑄)) = ((-(𝑃 · 𝑋) + (𝑃 · 𝑋)) + (𝑄 + -((𝑀↑3) / (𝑈↑3)))))
3415, 29mulneg2d 11632 . . . . . . . . . . . 12 (𝜑 → (𝑃 · -𝑋) = -(𝑃 · 𝑋))
35 dcubic2.2 . . . . . . . . . . . . . . 15 (𝜑𝑋 = (𝑈 − (𝑀 / 𝑈)))
3635negeqd 11415 . . . . . . . . . . . . . 14 (𝜑 → -𝑋 = -(𝑈 − (𝑀 / 𝑈)))
3721, 1, 7divcld 11958 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 / 𝑈) ∈ ℂ)
381, 37negsubdid 11548 . . . . . . . . . . . . . 14 (𝜑 → -(𝑈 − (𝑀 / 𝑈)) = (-𝑈 + (𝑀 / 𝑈)))
3936, 38eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → -𝑋 = (-𝑈 + (𝑀 / 𝑈)))
4039oveq2d 7403 . . . . . . . . . . . 12 (𝜑 → (𝑃 · -𝑋) = (𝑃 · (-𝑈 + (𝑀 / 𝑈))))
4134, 40eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → -(𝑃 · 𝑋) = (𝑃 · (-𝑈 + (𝑀 / 𝑈))))
421negcld 11520 . . . . . . . . . . . 12 (𝜑 → -𝑈 ∈ ℂ)
4315, 42, 37adddid 11198 . . . . . . . . . . 11 (𝜑 → (𝑃 · (-𝑈 + (𝑀 / 𝑈))) = ((𝑃 · -𝑈) + (𝑃 · (𝑀 / 𝑈))))
4415, 1mulneg2d 11632 . . . . . . . . . . . 12 (𝜑 → (𝑃 · -𝑈) = -(𝑃 · 𝑈))
4544oveq1d 7402 . . . . . . . . . . 11 (𝜑 → ((𝑃 · -𝑈) + (𝑃 · (𝑀 / 𝑈))) = (-(𝑃 · 𝑈) + (𝑃 · (𝑀 / 𝑈))))
4641, 43, 453eqtrd 2768 . . . . . . . . . 10 (𝜑 → -(𝑃 · 𝑋) = (-(𝑃 · 𝑈) + (𝑃 · (𝑀 / 𝑈))))
4746oveq1d 7402 . . . . . . . . 9 (𝜑 → (-(𝑃 · 𝑋) + -((𝑀↑3) / (𝑈↑3))) = ((-(𝑃 · 𝑈) + (𝑃 · (𝑀 / 𝑈))) + -((𝑀↑3) / (𝑈↑3))))
4815, 1mulcld 11194 . . . . . . . . . . 11 (𝜑 → (𝑃 · 𝑈) ∈ ℂ)
4948negcld 11520 . . . . . . . . . 10 (𝜑 → -(𝑃 · 𝑈) ∈ ℂ)
5015, 37mulcld 11194 . . . . . . . . . 10 (𝜑 → (𝑃 · (𝑀 / 𝑈)) ∈ ℂ)
5149, 50, 32addassd 11196 . . . . . . . . 9 (𝜑 → ((-(𝑃 · 𝑈) + (𝑃 · (𝑀 / 𝑈))) + -((𝑀↑3) / (𝑈↑3))) = (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))))
5247, 51eqtrd 2764 . . . . . . . 8 (𝜑 → (-(𝑃 · 𝑋) + -((𝑀↑3) / (𝑈↑3))) = (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))))
5352oveq1d 7402 . . . . . . 7 (𝜑 → ((-(𝑃 · 𝑋) + -((𝑀↑3) / (𝑈↑3))) + ((𝑃 · 𝑋) + 𝑄)) = ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄)))
5431, 30addcomd 11376 . . . . . . . . . 10 (𝜑 → (-(𝑃 · 𝑋) + (𝑃 · 𝑋)) = ((𝑃 · 𝑋) + -(𝑃 · 𝑋)))
5530negidd 11523 . . . . . . . . . 10 (𝜑 → ((𝑃 · 𝑋) + -(𝑃 · 𝑋)) = 0)
5654, 55eqtrd 2764 . . . . . . . . 9 (𝜑 → (-(𝑃 · 𝑋) + (𝑃 · 𝑋)) = 0)
5756oveq1d 7402 . . . . . . . 8 (𝜑 → ((-(𝑃 · 𝑋) + (𝑃 · 𝑋)) + (𝑄 + -((𝑀↑3) / (𝑈↑3)))) = (0 + (𝑄 + -((𝑀↑3) / (𝑈↑3)))))
5813, 32addcld 11193 . . . . . . . . 9 (𝜑 → (𝑄 + -((𝑀↑3) / (𝑈↑3))) ∈ ℂ)
5958addlidd 11375 . . . . . . . 8 (𝜑 → (0 + (𝑄 + -((𝑀↑3) / (𝑈↑3)))) = (𝑄 + -((𝑀↑3) / (𝑈↑3))))
6057, 59eqtrd 2764 . . . . . . 7 (𝜑 → ((-(𝑃 · 𝑋) + (𝑃 · 𝑋)) + (𝑄 + -((𝑀↑3) / (𝑈↑3)))) = (𝑄 + -((𝑀↑3) / (𝑈↑3))))
6133, 53, 603eqtr3d 2772 . . . . . 6 (𝜑 → ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄)) = (𝑄 + -((𝑀↑3) / (𝑈↑3))))
6213, 4mulcld 11194 . . . . . . 7 (𝜑 → (𝑄 · (𝑈↑3)) ∈ ℂ)
6362, 23, 4, 10divsubdird 11997 . . . . . 6 (𝜑 → (((𝑄 · (𝑈↑3)) − (𝑀↑3)) / (𝑈↑3)) = (((𝑄 · (𝑈↑3)) / (𝑈↑3)) − ((𝑀↑3) / (𝑈↑3))))
6428, 61, 633eqtr4d 2774 . . . . 5 (𝜑 → ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄)) = (((𝑄 · (𝑈↑3)) − (𝑀↑3)) / (𝑈↑3)))
6512, 64oveq12d 7405 . . . 4 (𝜑 → ((𝑈↑3) + ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄))) = ((((𝑈↑3)↑2) / (𝑈↑3)) + (((𝑄 · (𝑈↑3)) − (𝑀↑3)) / (𝑈↑3))))
661, 37negsubd 11539 . . . . . . . . . 10 (𝜑 → (𝑈 + -(𝑀 / 𝑈)) = (𝑈 − (𝑀 / 𝑈)))
6735, 66eqtr4d 2767 . . . . . . . . 9 (𝜑𝑋 = (𝑈 + -(𝑀 / 𝑈)))
6867oveq1d 7402 . . . . . . . 8 (𝜑 → (𝑋↑3) = ((𝑈 + -(𝑀 / 𝑈))↑3))
6937negcld 11520 . . . . . . . . 9 (𝜑 → -(𝑀 / 𝑈) ∈ ℂ)
70 binom3 14189 . . . . . . . . 9 ((𝑈 ∈ ℂ ∧ -(𝑀 / 𝑈) ∈ ℂ) → ((𝑈 + -(𝑀 / 𝑈))↑3) = (((𝑈↑3) + (3 · ((𝑈↑2) · -(𝑀 / 𝑈)))) + ((3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) + (-(𝑀 / 𝑈)↑3))))
711, 69, 70syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑈 + -(𝑀 / 𝑈))↑3) = (((𝑈↑3) + (3 · ((𝑈↑2) · -(𝑀 / 𝑈)))) + ((3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) + (-(𝑀 / 𝑈)↑3))))
721sqcld 14109 . . . . . . . . . . . . . 14 (𝜑 → (𝑈↑2) ∈ ℂ)
7372, 37mulneg2d 11632 . . . . . . . . . . . . 13 (𝜑 → ((𝑈↑2) · -(𝑀 / 𝑈)) = -((𝑈↑2) · (𝑀 / 𝑈)))
7472, 21, 1, 7div12d 11994 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑈↑2) · (𝑀 / 𝑈)) = (𝑀 · ((𝑈↑2) / 𝑈)))
751sqvald 14108 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑈↑2) = (𝑈 · 𝑈))
7675oveq1d 7402 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑈↑2) / 𝑈) = ((𝑈 · 𝑈) / 𝑈))
771, 1, 7divcan4d 11964 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑈 · 𝑈) / 𝑈) = 𝑈)
7876, 77eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑈↑2) / 𝑈) = 𝑈)
7978oveq2d 7403 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 · ((𝑈↑2) / 𝑈)) = (𝑀 · 𝑈))
8074, 79eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → ((𝑈↑2) · (𝑀 / 𝑈)) = (𝑀 · 𝑈))
8180negeqd 11415 . . . . . . . . . . . . 13 (𝜑 → -((𝑈↑2) · (𝑀 / 𝑈)) = -(𝑀 · 𝑈))
8273, 81eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ((𝑈↑2) · -(𝑀 / 𝑈)) = -(𝑀 · 𝑈))
8382oveq2d 7403 . . . . . . . . . . 11 (𝜑 → (3 · ((𝑈↑2) · -(𝑀 / 𝑈))) = (3 · -(𝑀 · 𝑈)))
8421, 1mulcld 11194 . . . . . . . . . . . 12 (𝜑 → (𝑀 · 𝑈) ∈ ℂ)
8517, 84mulneg2d 11632 . . . . . . . . . . 11 (𝜑 → (3 · -(𝑀 · 𝑈)) = -(3 · (𝑀 · 𝑈)))
8617, 21, 1mulassd 11197 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝑀) · 𝑈) = (3 · (𝑀 · 𝑈)))
8714oveq2d 7403 . . . . . . . . . . . . . . 15 (𝜑 → (3 · 𝑀) = (3 · (𝑃 / 3)))
8815, 17, 19divcan2d 11960 . . . . . . . . . . . . . . 15 (𝜑 → (3 · (𝑃 / 3)) = 𝑃)
8987, 88eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (3 · 𝑀) = 𝑃)
9089oveq1d 7402 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝑀) · 𝑈) = (𝑃 · 𝑈))
9186, 90eqtr3d 2766 . . . . . . . . . . . 12 (𝜑 → (3 · (𝑀 · 𝑈)) = (𝑃 · 𝑈))
9291negeqd 11415 . . . . . . . . . . 11 (𝜑 → -(3 · (𝑀 · 𝑈)) = -(𝑃 · 𝑈))
9383, 85, 923eqtrd 2768 . . . . . . . . . 10 (𝜑 → (3 · ((𝑈↑2) · -(𝑀 / 𝑈))) = -(𝑃 · 𝑈))
9493oveq2d 7403 . . . . . . . . 9 (𝜑 → ((𝑈↑3) + (3 · ((𝑈↑2) · -(𝑀 / 𝑈)))) = ((𝑈↑3) + -(𝑃 · 𝑈)))
95 sqneg 14080 . . . . . . . . . . . . . . . 16 ((𝑀 / 𝑈) ∈ ℂ → (-(𝑀 / 𝑈)↑2) = ((𝑀 / 𝑈)↑2))
9637, 95syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (-(𝑀 / 𝑈)↑2) = ((𝑀 / 𝑈)↑2))
9737sqvald 14108 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 / 𝑈)↑2) = ((𝑀 / 𝑈) · (𝑀 / 𝑈)))
9896, 97eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (-(𝑀 / 𝑈)↑2) = ((𝑀 / 𝑈) · (𝑀 / 𝑈)))
9998oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (𝑈 · (-(𝑀 / 𝑈)↑2)) = (𝑈 · ((𝑀 / 𝑈) · (𝑀 / 𝑈))))
1001, 37, 37mulassd 11197 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 · (𝑀 / 𝑈)) · (𝑀 / 𝑈)) = (𝑈 · ((𝑀 / 𝑈) · (𝑀 / 𝑈))))
10121, 1, 7divcan2d 11960 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 · (𝑀 / 𝑈)) = 𝑀)
102101oveq1d 7402 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 · (𝑀 / 𝑈)) · (𝑀 / 𝑈)) = (𝑀 · (𝑀 / 𝑈)))
10399, 100, 1023eqtr2d 2770 . . . . . . . . . . . 12 (𝜑 → (𝑈 · (-(𝑀 / 𝑈)↑2)) = (𝑀 · (𝑀 / 𝑈)))
104103oveq2d 7403 . . . . . . . . . . 11 (𝜑 → (3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) = (3 · (𝑀 · (𝑀 / 𝑈))))
10517, 21, 37mulassd 11197 . . . . . . . . . . 11 (𝜑 → ((3 · 𝑀) · (𝑀 / 𝑈)) = (3 · (𝑀 · (𝑀 / 𝑈))))
10689oveq1d 7402 . . . . . . . . . . 11 (𝜑 → ((3 · 𝑀) · (𝑀 / 𝑈)) = (𝑃 · (𝑀 / 𝑈)))
107104, 105, 1063eqtr2d 2770 . . . . . . . . . 10 (𝜑 → (3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) = (𝑃 · (𝑀 / 𝑈)))
108 3nn 12265 . . . . . . . . . . . . 13 3 ∈ ℕ
109108a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℕ)
110 n2dvds3 16341 . . . . . . . . . . . . 13 ¬ 2 ∥ 3
111110a1i 11 . . . . . . . . . . . 12 (𝜑 → ¬ 2 ∥ 3)
112 oexpneg 16315 . . . . . . . . . . . 12 (((𝑀 / 𝑈) ∈ ℂ ∧ 3 ∈ ℕ ∧ ¬ 2 ∥ 3) → (-(𝑀 / 𝑈)↑3) = -((𝑀 / 𝑈)↑3))
11337, 109, 111, 112syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (-(𝑀 / 𝑈)↑3) = -((𝑀 / 𝑈)↑3))
1142a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ∈ ℕ0)
11521, 1, 7, 114expdivd 14125 . . . . . . . . . . . 12 (𝜑 → ((𝑀 / 𝑈)↑3) = ((𝑀↑3) / (𝑈↑3)))
116115negeqd 11415 . . . . . . . . . . 11 (𝜑 → -((𝑀 / 𝑈)↑3) = -((𝑀↑3) / (𝑈↑3)))
117113, 116eqtrd 2764 . . . . . . . . . 10 (𝜑 → (-(𝑀 / 𝑈)↑3) = -((𝑀↑3) / (𝑈↑3)))
118107, 117oveq12d 7405 . . . . . . . . 9 (𝜑 → ((3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) + (-(𝑀 / 𝑈)↑3)) = ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))
11994, 118oveq12d 7405 . . . . . . . 8 (𝜑 → (((𝑈↑3) + (3 · ((𝑈↑2) · -(𝑀 / 𝑈)))) + ((3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) + (-(𝑀 / 𝑈)↑3))) = (((𝑈↑3) + -(𝑃 · 𝑈)) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))))
12068, 71, 1193eqtrd 2768 . . . . . . 7 (𝜑 → (𝑋↑3) = (((𝑈↑3) + -(𝑃 · 𝑈)) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))))
12150, 32addcld 11193 . . . . . . . 8 (𝜑 → ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))) ∈ ℂ)
1224, 49, 121addassd 11196 . . . . . . 7 (𝜑 → (((𝑈↑3) + -(𝑃 · 𝑈)) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) = ((𝑈↑3) + (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))))
123120, 122eqtrd 2764 . . . . . 6 (𝜑 → (𝑋↑3) = ((𝑈↑3) + (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))))
124123oveq1d 7402 . . . . 5 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = (((𝑈↑3) + (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))) + ((𝑃 · 𝑋) + 𝑄)))
12549, 121addcld 11193 . . . . . 6 (𝜑 → (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) ∈ ℂ)
12630, 13addcld 11193 . . . . . 6 (𝜑 → ((𝑃 · 𝑋) + 𝑄) ∈ ℂ)
1274, 125, 126addassd 11196 . . . . 5 (𝜑 → (((𝑈↑3) + (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))) + ((𝑃 · 𝑋) + 𝑄)) = ((𝑈↑3) + ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄))))
128124, 127eqtrd 2764 . . . 4 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = ((𝑈↑3) + ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄))))
1294sqcld 14109 . . . . 5 (𝜑 → ((𝑈↑3)↑2) ∈ ℂ)
13062, 23subcld 11533 . . . . 5 (𝜑 → ((𝑄 · (𝑈↑3)) − (𝑀↑3)) ∈ ℂ)
131129, 130, 4, 10divdird 11996 . . . 4 (𝜑 → ((((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) / (𝑈↑3)) = ((((𝑈↑3)↑2) / (𝑈↑3)) + (((𝑄 · (𝑈↑3)) − (𝑀↑3)) / (𝑈↑3))))
13265, 128, 1313eqtr4d 2774 . . 3 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = ((((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) / (𝑈↑3)))
133132eqeq1d 2731 . 2 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ ((((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) / (𝑈↑3)) = 0))
134129, 130addcld 11193 . . 3 (𝜑 → (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) ∈ ℂ)
135134, 4, 10diveq0ad 11968 . 2 (𝜑 → (((((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) / (𝑈↑3)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0))
136133, 135bitrd 279 1 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  cc 11066  0cc0 11068   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cexp 14026  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-dvds 16223
This theorem is referenced by:  dcubic2  26754  dcubic1  26755
  Copyright terms: Public domain W3C validator