MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moddvds Structured version   Visualization version   GIF version

Theorem moddvds 16154
Description: Two ways to say 𝐴𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
moddvds ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem moddvds
StepHypRef Expression
1 nnrp 12933 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
21adantr 482 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℝ+)
3 0mod 13814 . . . . 5 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
42, 3syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (0 mod 𝑁) = 0)
54eqeq2d 2748 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = 0))
6 zre 12510 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
76ad2antrl 727 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℝ)
8 zre 12510 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
98ad2antll 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℝ)
109renegcld 11589 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → -𝐵 ∈ ℝ)
11 modadd1 13820 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁))
12113expia 1122 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁)))
137, 9, 10, 2, 12syl22anc 838 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁)))
147recnd 11190 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℂ)
159recnd 11190 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
1614, 15negsubd 11525 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐴 + -𝐵) = (𝐴𝐵))
1716oveq1d 7377 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐴𝐵) mod 𝑁))
1815negidd 11509 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐵 + -𝐵) = 0)
1918oveq1d 7377 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐵 + -𝐵) mod 𝑁) = (0 mod 𝑁))
2017, 19eqeq12d 2753 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
2113, 20sylibd 238 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
227, 9resubcld 11590 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐴𝐵) ∈ ℝ)
23 0red 11165 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 0 ∈ ℝ)
24 modadd1 13820 . . . . . . 7 ((((𝐴𝐵) ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁))
25243expia 1122 . . . . . 6 ((((𝐴𝐵) ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁)))
2622, 23, 9, 2, 25syl22anc 838 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁)))
2714, 15npcand 11523 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴𝐵) + 𝐵) = 𝐴)
2827oveq1d 7377 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) + 𝐵) mod 𝑁) = (𝐴 mod 𝑁))
2915addid2d 11363 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (0 + 𝐵) = 𝐵)
3029oveq1d 7377 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((0 + 𝐵) mod 𝑁) = (𝐵 mod 𝑁))
3128, 30eqeq12d 2753 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
3226, 31sylibd 238 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
3321, 32impbid 211 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
34 zsubcl 12552 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
35 dvdsval3 16147 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐵) ∈ ℤ) → (𝑁 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) mod 𝑁) = 0))
3634, 35sylan2 594 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) mod 𝑁) = 0))
375, 33, 363bitr4d 311 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
38373impb 1116 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5110  (class class class)co 7362  cr 11057  0cc0 11058   + caddc 11061  cmin 11392  -cneg 11393  cn 12160  cz 12506  +crp 12922   mod cmo 13781  cdvds 16143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fl 13704  df-mod 13782  df-dvds 16144
This theorem is referenced by:  modm1div  16155  summodnegmod  16176  modmulconst  16177  addmodlteqALT  16214  dvdsmod  16218  sadadd3  16348  sadaddlem  16353  congr  16547  cncongr1  16550  cncongr2  16551  crth  16657  eulerthlem2  16661  prmdiv  16664  prmdiveq  16665  odzcllem  16671  odzdvds  16674  odzphi  16675  pockthlem  16784  4sqlem11  16834  4sqlem12  16835  mndodcong  19331  dfod2  19353  sylow3lem6  19421  znf1o  20974  wilthlem1  26433  wilthlem2  26434  wilthlem3  26435  wilthimp  26437  ppiub  26568  lgslem1  26661  lgsmod  26687  lgsdirprm  26695  lgsqrlem1  26710  lgsqrlem2  26711  lgsqr  26715  lgsqrmod  26716  lgsqrmodndvds  26717  lgsdchrval  26718  lgseisenlem2  26740  lgseisenlem3  26741  lgseisenlem4  26742  m1lgs  26752  sfprmdvdsmersenne  45869  dfwppr  46004  fpprwpprb  46006
  Copyright terms: Public domain W3C validator