MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moddvds Structured version   Visualization version   GIF version

Theorem moddvds 16208
Description: Two ways to say 𝐴𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
moddvds ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem moddvds
StepHypRef Expression
1 nnrp 12985 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
21adantr 482 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℝ+)
3 0mod 13867 . . . . 5 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
42, 3syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (0 mod 𝑁) = 0)
54eqeq2d 2744 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = 0))
6 zre 12562 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
76ad2antrl 727 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℝ)
8 zre 12562 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
98ad2antll 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℝ)
109renegcld 11641 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → -𝐵 ∈ ℝ)
11 modadd1 13873 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁))
12113expia 1122 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁)))
137, 9, 10, 2, 12syl22anc 838 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁)))
147recnd 11242 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℂ)
159recnd 11242 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
1614, 15negsubd 11577 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐴 + -𝐵) = (𝐴𝐵))
1716oveq1d 7424 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐴𝐵) mod 𝑁))
1815negidd 11561 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐵 + -𝐵) = 0)
1918oveq1d 7424 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐵 + -𝐵) mod 𝑁) = (0 mod 𝑁))
2017, 19eqeq12d 2749 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
2113, 20sylibd 238 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
227, 9resubcld 11642 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐴𝐵) ∈ ℝ)
23 0red 11217 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 0 ∈ ℝ)
24 modadd1 13873 . . . . . . 7 ((((𝐴𝐵) ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁))
25243expia 1122 . . . . . 6 ((((𝐴𝐵) ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁)))
2622, 23, 9, 2, 25syl22anc 838 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁)))
2714, 15npcand 11575 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴𝐵) + 𝐵) = 𝐴)
2827oveq1d 7424 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) + 𝐵) mod 𝑁) = (𝐴 mod 𝑁))
2915addlidd 11415 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (0 + 𝐵) = 𝐵)
3029oveq1d 7424 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((0 + 𝐵) mod 𝑁) = (𝐵 mod 𝑁))
3128, 30eqeq12d 2749 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
3226, 31sylibd 238 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
3321, 32impbid 211 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
34 zsubcl 12604 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
35 dvdsval3 16201 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐵) ∈ ℤ) → (𝑁 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) mod 𝑁) = 0))
3634, 35sylan2 594 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) mod 𝑁) = 0))
375, 33, 363bitr4d 311 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
38373impb 1116 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409  cr 11109  0cc0 11110   + caddc 11113  cmin 11444  -cneg 11445  cn 12212  cz 12558  +crp 12974   mod cmo 13834  cdvds 16197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fl 13757  df-mod 13835  df-dvds 16198
This theorem is referenced by:  modm1div  16209  summodnegmod  16230  modmulconst  16231  addmodlteqALT  16268  dvdsmod  16272  sadadd3  16402  sadaddlem  16407  congr  16601  cncongr1  16604  cncongr2  16605  crth  16711  eulerthlem2  16715  prmdiv  16718  prmdiveq  16719  odzcllem  16725  odzdvds  16728  odzphi  16729  pockthlem  16838  4sqlem11  16888  4sqlem12  16889  mndodcong  19410  dfod2  19432  sylow3lem6  19500  znf1o  21107  wilthlem1  26572  wilthlem2  26573  wilthlem3  26574  wilthimp  26576  ppiub  26707  lgslem1  26800  lgsmod  26826  lgsdirprm  26834  lgsqrlem1  26849  lgsqrlem2  26850  lgsqr  26854  lgsqrmod  26855  lgsqrmodndvds  26856  lgsdchrval  26857  lgseisenlem2  26879  lgseisenlem3  26880  lgseisenlem4  26881  m1lgs  26891  sfprmdvdsmersenne  46271  dfwppr  46406  fpprwpprb  46408
  Copyright terms: Public domain W3C validator