MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem1 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem1 29939
Description: Lemma 1 for wwlksnextprop 29942. (Contributed by Alexander van der Vekens, 31-Jul-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypothesis
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
Assertion
Ref Expression
wwlksnextproplem1 ((𝑊𝑋𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))

Proof of Theorem wwlksnextproplem1
StepHypRef Expression
1 wwlknbp1 29874 . . . . 5 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)))
2 simpl2 1191 . . . . . . 7 ((((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
3 peano2nn0 12564 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
433ad2ant1 1132 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑁 + 1) + 1) ∈ ℕ0)
5 eleq1 2827 . . . . . . . . . . 11 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((♯‘𝑊) ∈ ℕ0 ↔ ((𝑁 + 1) + 1) ∈ ℕ0))
653ad2ant3 1134 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((♯‘𝑊) ∈ ℕ0 ↔ ((𝑁 + 1) + 1) ∈ ℕ0))
74, 6mpbird 257 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (♯‘𝑊) ∈ ℕ0)
87adantr 480 . . . . . . . 8 ((((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (♯‘𝑊) ∈ ℕ0)
9 simpr 484 . . . . . . . . 9 ((((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 nn0re 12533 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
1110lep1d 12197 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
12113ad2ant1 1132 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
13 breq2 5152 . . . . . . . . . . . 12 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
14133ad2ant3 1134 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
1512, 14mpbird 257 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 + 1) ≤ (♯‘𝑊))
1615adantr 480 . . . . . . . . 9 ((((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊))
17 nn0p1elfzo 13739 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝑊)) → 𝑁 ∈ (0..^(♯‘𝑊)))
189, 8, 16, 17syl3anc 1370 . . . . . . . 8 ((((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (0..^(♯‘𝑊)))
19 fz0add1fz1 13771 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ0𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 + 1) ∈ (1...(♯‘𝑊)))
208, 18, 19syl2anc 584 . . . . . . 7 ((((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (1...(♯‘𝑊)))
212, 20jca 511 . . . . . 6 ((((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
2221ex 412 . . . . 5 (((𝑁 + 1) ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
231, 22syl 17 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
24 wwlksnextprop.x . . . 4 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
2523, 24eleq2s 2857 . . 3 (𝑊𝑋 → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2625imp 406 . 2 ((𝑊𝑋𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
27 pfxfv0 14727 . 2 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
2826, 27syl 17 1 ((𝑊𝑋𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  0cn0 12524  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   prefix cpfx 14705  Vtxcvtx 29028   WWalksN cwwlksn 29856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-substr 14676  df-pfx 14706  df-wwlks 29860  df-wwlksn 29861
This theorem is referenced by:  wwlksnextproplem3  29941  wwlksnextprop  29942
  Copyright terms: Public domain W3C validator