Proof of Theorem wwlksnextproplem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | wwlknbp1 29864 | . . . . 5
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑁 + 1) ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) | 
| 2 |  | simpl2 1193 | . . . . . . 7
⊢ ((((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0)
→ 𝑊 ∈ Word
(Vtx‘𝐺)) | 
| 3 |  | peano2nn0 12566 | . . . . . . . . . . 11
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑁 + 1) + 1) ∈
ℕ0) | 
| 4 | 3 | 3ad2ant1 1134 | . . . . . . . . . 10
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑁 + 1) + 1) ∈
ℕ0) | 
| 5 |  | eleq1 2829 | . . . . . . . . . . 11
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) →
((♯‘𝑊) ∈
ℕ0 ↔ ((𝑁 + 1) + 1) ∈
ℕ0)) | 
| 6 | 5 | 3ad2ant3 1136 | . . . . . . . . . 10
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) →
((♯‘𝑊) ∈
ℕ0 ↔ ((𝑁 + 1) + 1) ∈
ℕ0)) | 
| 7 | 4, 6 | mpbird 257 | . . . . . . . . 9
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) →
(♯‘𝑊) ∈
ℕ0) | 
| 8 | 7 | adantr 480 | . . . . . . . 8
⊢ ((((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0)
→ (♯‘𝑊)
∈ ℕ0) | 
| 9 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℕ0) | 
| 10 |  | nn0re 12535 | . . . . . . . . . . . . 13
⊢ ((𝑁 + 1) ∈ ℕ0
→ (𝑁 + 1) ∈
ℝ) | 
| 11 | 10 | lep1d 12199 | . . . . . . . . . . . 12
⊢ ((𝑁 + 1) ∈ ℕ0
→ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)) | 
| 12 | 11 | 3ad2ant1 1134 | . . . . . . . . . . 11
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 + 1) ≤ ((𝑁 + 1) + 1)) | 
| 13 |  | breq2 5147 | . . . . . . . . . . . 12
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) →
((𝑁 + 1) ≤
(♯‘𝑊) ↔
(𝑁 + 1) ≤ ((𝑁 + 1) + 1))) | 
| 14 | 13 | 3ad2ant3 1136 | . . . . . . . . . . 11
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))) | 
| 15 | 12, 14 | mpbird 257 | . . . . . . . . . 10
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 + 1) ≤ (♯‘𝑊)) | 
| 16 | 15 | adantr 480 | . . . . . . . . 9
⊢ ((((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0)
→ (𝑁 + 1) ≤
(♯‘𝑊)) | 
| 17 |  | nn0p1elfzo 13742 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝑊)
∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝑊)) → 𝑁 ∈ (0..^(♯‘𝑊))) | 
| 18 | 9, 8, 16, 17 | syl3anc 1373 | . . . . . . . 8
⊢ ((((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
(0..^(♯‘𝑊))) | 
| 19 |  | fz0add1fz1 13774 | . . . . . . . 8
⊢
(((♯‘𝑊)
∈ ℕ0 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 + 1) ∈ (1...(♯‘𝑊))) | 
| 20 | 8, 18, 19 | syl2anc 584 | . . . . . . 7
⊢ ((((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0)
→ (𝑁 + 1) ∈
(1...(♯‘𝑊))) | 
| 21 | 2, 20 | jca 511 | . . . . . 6
⊢ ((((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0)
→ (𝑊 ∈ Word
(Vtx‘𝐺) ∧ (𝑁 + 1) ∈
(1...(♯‘𝑊)))) | 
| 22 | 21 | ex 412 | . . . . 5
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0
→ (𝑊 ∈ Word
(Vtx‘𝐺) ∧ (𝑁 + 1) ∈
(1...(♯‘𝑊))))) | 
| 23 | 1, 22 | syl 17 | . . . 4
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))) | 
| 24 |  | wwlksnextprop.x | . . . 4
⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) | 
| 25 | 23, 24 | eleq2s 2859 | . . 3
⊢ (𝑊 ∈ 𝑋 → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))) | 
| 26 | 25 | imp 406 | . 2
⊢ ((𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))) | 
| 27 |  | pfxfv0 14730 | . 2
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0)) | 
| 28 | 26, 27 | syl 17 | 1
⊢ ((𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0)) |