![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odeq1 | Structured version Visualization version GIF version |
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
Ref | Expression |
---|---|
od1.1 | ⊢ 𝑂 = (od‘𝐺) |
od1.2 | ⊢ 0 = (0g‘𝐺) |
odeq1.3 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
odeq1 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 ↔ 𝐴 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7420 | . . . 4 ⊢ ((𝑂‘𝐴) = 1 → ((𝑂‘𝐴)(.g‘𝐺)𝐴) = (1(.g‘𝐺)𝐴)) | |
2 | 1 | eqcomd 2736 | . . 3 ⊢ ((𝑂‘𝐴) = 1 → (1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴)) |
3 | odeq1.3 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
4 | eqid 2730 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
5 | 3, 4 | mulg1 18999 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (1(.g‘𝐺)𝐴) = 𝐴) |
6 | od1.1 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
7 | od1.2 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
8 | 3, 6, 4, 7 | odid 19449 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴)(.g‘𝐺)𝐴) = 0 ) |
9 | 5, 8 | eqeq12d 2746 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → ((1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴) ↔ 𝐴 = 0 )) |
10 | 9 | adantl 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴) ↔ 𝐴 = 0 )) |
11 | 2, 10 | imbitrid 243 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 → 𝐴 = 0 )) |
12 | 6, 7 | od1 19470 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑂‘ 0 ) = 1) |
13 | 12 | adantr 479 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘ 0 ) = 1) |
14 | fveqeq2 6901 | . . 3 ⊢ (𝐴 = 0 → ((𝑂‘𝐴) = 1 ↔ (𝑂‘ 0 ) = 1)) | |
15 | 13, 14 | syl5ibrcom 246 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 0 → (𝑂‘𝐴) = 1)) |
16 | 11, 15 | impbid 211 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 ↔ 𝐴 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ‘cfv 6544 (class class class)co 7413 1c1 11115 Basecbs 17150 0gc0g 17391 Grpcgrp 18857 .gcmg 18988 odcod 19435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-seq 13973 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-mulg 18989 df-od 19439 |
This theorem is referenced by: odcau 19515 prmcyg 19805 ablfacrp 19979 |
Copyright terms: Public domain | W3C validator |