![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odeq1 | Structured version Visualization version GIF version |
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
Ref | Expression |
---|---|
od1.1 | ⊢ 𝑂 = (od‘𝐺) |
od1.2 | ⊢ 0 = (0g‘𝐺) |
odeq1.3 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
odeq1 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 ↔ 𝐴 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7320 | . . . 4 ⊢ ((𝑂‘𝐴) = 1 → ((𝑂‘𝐴)(.g‘𝐺)𝐴) = (1(.g‘𝐺)𝐴)) | |
2 | 1 | eqcomd 2743 | . . 3 ⊢ ((𝑂‘𝐴) = 1 → (1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴)) |
3 | odeq1.3 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
4 | eqid 2737 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
5 | 3, 4 | mulg1 18778 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (1(.g‘𝐺)𝐴) = 𝐴) |
6 | od1.1 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
7 | od1.2 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
8 | 3, 6, 4, 7 | odid 19213 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴)(.g‘𝐺)𝐴) = 0 ) |
9 | 5, 8 | eqeq12d 2753 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → ((1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴) ↔ 𝐴 = 0 )) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴) ↔ 𝐴 = 0 )) |
11 | 2, 10 | syl5ib 243 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 → 𝐴 = 0 )) |
12 | 6, 7 | od1 19233 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑂‘ 0 ) = 1) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘ 0 ) = 1) |
14 | fveqeq2 6818 | . . 3 ⊢ (𝐴 = 0 → ((𝑂‘𝐴) = 1 ↔ (𝑂‘ 0 ) = 1)) | |
15 | 13, 14 | syl5ibrcom 246 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 0 → (𝑂‘𝐴) = 1)) |
16 | 11, 15 | impbid 211 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 ↔ 𝐴 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 (class class class)co 7313 1c1 10942 Basecbs 16979 0gc0g 17217 Grpcgrp 18644 .gcmg 18767 odcod 19199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-sup 9269 df-inf 9270 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-seq 13792 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-mulg 18768 df-od 19203 |
This theorem is referenced by: odcau 19276 prmcyg 19562 ablfacrp 19736 |
Copyright terms: Public domain | W3C validator |