MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odeq1 Structured version   Visualization version   GIF version

Theorem odeq1 19082
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
od1.1 𝑂 = (od‘𝐺)
od1.2 0 = (0g𝐺)
odeq1.3 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
odeq1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 ↔ 𝐴 = 0 ))

Proof of Theorem odeq1
StepHypRef Expression
1 oveq1 7262 . . . 4 ((𝑂𝐴) = 1 → ((𝑂𝐴)(.g𝐺)𝐴) = (1(.g𝐺)𝐴))
21eqcomd 2744 . . 3 ((𝑂𝐴) = 1 → (1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴))
3 odeq1.3 . . . . . 6 𝑋 = (Base‘𝐺)
4 eqid 2738 . . . . . 6 (.g𝐺) = (.g𝐺)
53, 4mulg1 18626 . . . . 5 (𝐴𝑋 → (1(.g𝐺)𝐴) = 𝐴)
6 od1.1 . . . . . 6 𝑂 = (od‘𝐺)
7 od1.2 . . . . . 6 0 = (0g𝐺)
83, 6, 4, 7odid 19061 . . . . 5 (𝐴𝑋 → ((𝑂𝐴)(.g𝐺)𝐴) = 0 )
95, 8eqeq12d 2754 . . . 4 (𝐴𝑋 → ((1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴) ↔ 𝐴 = 0 ))
109adantl 481 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴) ↔ 𝐴 = 0 ))
112, 10syl5ib 243 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 → 𝐴 = 0 ))
126, 7od1 19081 . . . 4 (𝐺 ∈ Grp → (𝑂0 ) = 1)
1312adantr 480 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂0 ) = 1)
14 fveqeq2 6765 . . 3 (𝐴 = 0 → ((𝑂𝐴) = 1 ↔ (𝑂0 ) = 1))
1513, 14syl5ibrcom 246 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴 = 0 → (𝑂𝐴) = 1))
1611, 15impbid 211 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 ↔ 𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  1c1 10803  Basecbs 16840  0gc0g 17067  Grpcgrp 18492  .gcmg 18615  odcod 19047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mulg 18616  df-od 19051
This theorem is referenced by:  odcau  19124  prmcyg  19410  ablfacrp  19584
  Copyright terms: Public domain W3C validator