MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odeq1 Structured version   Visualization version   GIF version

Theorem odeq1 18951
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
od1.1 𝑂 = (od‘𝐺)
od1.2 0 = (0g𝐺)
odeq1.3 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
odeq1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 ↔ 𝐴 = 0 ))

Proof of Theorem odeq1
StepHypRef Expression
1 oveq1 7220 . . . 4 ((𝑂𝐴) = 1 → ((𝑂𝐴)(.g𝐺)𝐴) = (1(.g𝐺)𝐴))
21eqcomd 2743 . . 3 ((𝑂𝐴) = 1 → (1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴))
3 odeq1.3 . . . . . 6 𝑋 = (Base‘𝐺)
4 eqid 2737 . . . . . 6 (.g𝐺) = (.g𝐺)
53, 4mulg1 18499 . . . . 5 (𝐴𝑋 → (1(.g𝐺)𝐴) = 𝐴)
6 od1.1 . . . . . 6 𝑂 = (od‘𝐺)
7 od1.2 . . . . . 6 0 = (0g𝐺)
83, 6, 4, 7odid 18930 . . . . 5 (𝐴𝑋 → ((𝑂𝐴)(.g𝐺)𝐴) = 0 )
95, 8eqeq12d 2753 . . . 4 (𝐴𝑋 → ((1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴) ↔ 𝐴 = 0 ))
109adantl 485 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴) ↔ 𝐴 = 0 ))
112, 10syl5ib 247 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 → 𝐴 = 0 ))
126, 7od1 18950 . . . 4 (𝐺 ∈ Grp → (𝑂0 ) = 1)
1312adantr 484 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂0 ) = 1)
14 fveqeq2 6726 . . 3 (𝐴 = 0 → ((𝑂𝐴) = 1 ↔ (𝑂0 ) = 1))
1513, 14syl5ibrcom 250 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴 = 0 → (𝑂𝐴) = 1))
1611, 15impbid 215 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 ↔ 𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  1c1 10730  Basecbs 16760  0gc0g 16944  Grpcgrp 18365  .gcmg 18488  odcod 18916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-seq 13575  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-mulg 18489  df-od 18920
This theorem is referenced by:  odcau  18993  prmcyg  19279  ablfacrp  19453
  Copyright terms: Public domain W3C validator