Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odeq1 | Structured version Visualization version GIF version |
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.) |
Ref | Expression |
---|---|
od1.1 | ⊢ 𝑂 = (od‘𝐺) |
od1.2 | ⊢ 0 = (0g‘𝐺) |
odeq1.3 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
odeq1 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 ↔ 𝐴 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7220 | . . . 4 ⊢ ((𝑂‘𝐴) = 1 → ((𝑂‘𝐴)(.g‘𝐺)𝐴) = (1(.g‘𝐺)𝐴)) | |
2 | 1 | eqcomd 2743 | . . 3 ⊢ ((𝑂‘𝐴) = 1 → (1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴)) |
3 | odeq1.3 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
4 | eqid 2737 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
5 | 3, 4 | mulg1 18499 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (1(.g‘𝐺)𝐴) = 𝐴) |
6 | od1.1 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
7 | od1.2 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
8 | 3, 6, 4, 7 | odid 18930 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴)(.g‘𝐺)𝐴) = 0 ) |
9 | 5, 8 | eqeq12d 2753 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → ((1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴) ↔ 𝐴 = 0 )) |
10 | 9 | adantl 485 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((1(.g‘𝐺)𝐴) = ((𝑂‘𝐴)(.g‘𝐺)𝐴) ↔ 𝐴 = 0 )) |
11 | 2, 10 | syl5ib 247 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 → 𝐴 = 0 )) |
12 | 6, 7 | od1 18950 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑂‘ 0 ) = 1) |
13 | 12 | adantr 484 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘ 0 ) = 1) |
14 | fveqeq2 6726 | . . 3 ⊢ (𝐴 = 0 → ((𝑂‘𝐴) = 1 ↔ (𝑂‘ 0 ) = 1)) | |
15 | 13, 14 | syl5ibrcom 250 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 0 → (𝑂‘𝐴) = 1)) |
16 | 11, 15 | impbid 215 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 1 ↔ 𝐴 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 1c1 10730 Basecbs 16760 0gc0g 16944 Grpcgrp 18365 .gcmg 18488 odcod 18916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-seq 13575 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-mulg 18489 df-od 18920 |
This theorem is referenced by: odcau 18993 prmcyg 19279 ablfacrp 19453 |
Copyright terms: Public domain | W3C validator |