MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odeq1 Structured version   Visualization version   GIF version

Theorem odeq1 18329
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
od1.1 𝑂 = (od‘𝐺)
od1.2 0 = (0g𝐺)
odeq1.3 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
odeq1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 ↔ 𝐴 = 0 ))

Proof of Theorem odeq1
StepHypRef Expression
1 oveq1 6913 . . . 4 ((𝑂𝐴) = 1 → ((𝑂𝐴)(.g𝐺)𝐴) = (1(.g𝐺)𝐴))
21eqcomd 2832 . . 3 ((𝑂𝐴) = 1 → (1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴))
3 odeq1.3 . . . . . 6 𝑋 = (Base‘𝐺)
4 eqid 2826 . . . . . 6 (.g𝐺) = (.g𝐺)
53, 4mulg1 17903 . . . . 5 (𝐴𝑋 → (1(.g𝐺)𝐴) = 𝐴)
6 od1.1 . . . . . 6 𝑂 = (od‘𝐺)
7 od1.2 . . . . . 6 0 = (0g𝐺)
83, 6, 4, 7odid 18309 . . . . 5 (𝐴𝑋 → ((𝑂𝐴)(.g𝐺)𝐴) = 0 )
95, 8eqeq12d 2841 . . . 4 (𝐴𝑋 → ((1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴) ↔ 𝐴 = 0 ))
109adantl 475 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((1(.g𝐺)𝐴) = ((𝑂𝐴)(.g𝐺)𝐴) ↔ 𝐴 = 0 ))
112, 10syl5ib 236 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 → 𝐴 = 0 ))
126, 7od1 18328 . . . 4 (𝐺 ∈ Grp → (𝑂0 ) = 1)
1312adantr 474 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂0 ) = 1)
14 fveqeq2 6443 . . 3 (𝐴 = 0 → ((𝑂𝐴) = 1 ↔ (𝑂0 ) = 1))
1513, 14syl5ibrcom 239 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴 = 0 → (𝑂𝐴) = 1))
1611, 15impbid 204 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 1 ↔ 𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  cfv 6124  (class class class)co 6906  1c1 10254  Basecbs 16223  0gc0g 16454  Grpcgrp 17777  .gcmg 17895  odcod 18296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-sup 8618  df-inf 8619  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-seq 13097  df-0g 16456  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-grp 17780  df-mulg 17896  df-od 18300
This theorem is referenced by:  odcau  18371  prmcyg  18649  ablfacrp  18820
  Copyright terms: Public domain W3C validator