MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finodsubmsubg Structured version   Visualization version   GIF version

Theorem finodsubmsubg 19504
Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
finodsubmsubg.o 𝑂 = (od‘𝐺)
finodsubmsubg.g (𝜑𝐺 ∈ Grp)
finodsubmsubg.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
finodsubmsubg.1 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
Assertion
Ref Expression
finodsubmsubg (𝜑𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑆,𝑎   𝐺,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑂(𝑎)

Proof of Theorem finodsubmsubg
StepHypRef Expression
1 finodsubmsubg.s . 2 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 finodsubmsubg.1 . . 3 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
3 eqid 2730 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
4 finodsubmsubg.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 eqid 2730 . . . . . . . 8 (.g𝐺) = (.g𝐺)
6 eqid 2730 . . . . . . . 8 (invg𝐺) = (invg𝐺)
7 finodsubmsubg.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
87adantr 480 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
93submss 18743 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
101, 9syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝐺))
1110sselda 3949 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ (Base‘𝐺))
123, 4, 5, 6, 8, 11odm1inv 19490 . . . . . . 7 ((𝜑𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
1312adantr 480 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
14 eqid 2730 . . . . . . . 8 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
15 eqid 2730 . . . . . . . 8 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
16 eqid 2730 . . . . . . . . . . 11 (𝐺s 𝑆) = (𝐺s 𝑆)
1716submmnd 18747 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺s 𝑆) ∈ Mnd)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (𝐺s 𝑆) ∈ Mnd)
1918ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (𝐺s 𝑆) ∈ Mnd)
20 nnm1nn0 12490 . . . . . . . . 9 ((𝑂𝑎) ∈ ℕ → ((𝑂𝑎) − 1) ∈ ℕ0)
2120adantl 481 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((𝑂𝑎) − 1) ∈ ℕ0)
22 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎𝑆)
2316, 3ressbas2 17215 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2410, 23syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝐺s 𝑆)))
2524ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺s 𝑆)))
2622, 25eleqtrd 2831 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺s 𝑆)))
2714, 15, 19, 21, 26mulgnn0cld 19034 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎) ∈ (Base‘(𝐺s 𝑆)))
281ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
295, 16, 15submmulg 19057 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂𝑎) − 1) ∈ ℕ0𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3028, 21, 22, 29syl3anc 1373 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3127, 30, 253eltr4d 2844 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) ∈ 𝑆)
3213, 31eqeltrrd 2830 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((invg𝐺)‘𝑎) ∈ 𝑆)
3332ex 412 . . . 4 ((𝜑𝑎𝑆) → ((𝑂𝑎) ∈ ℕ → ((invg𝐺)‘𝑎) ∈ 𝑆))
3433ralimdva 3146 . . 3 (𝜑 → (∀𝑎𝑆 (𝑂𝑎) ∈ ℕ → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆))
352, 34mpd 15 . 2 (𝜑 → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)
366issubg3 19083 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
377, 36syl 17 . 2 (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
381, 35, 37mpbir2and 713 1 (𝜑𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917  cfv 6514  (class class class)co 7390  1c1 11076  cmin 11412  cn 12193  0cn0 12449  Basecbs 17186  s cress 17207  Mndcmnd 18668  SubMndcsubmnd 18716  Grpcgrp 18872  invgcminusg 18873  .gcmg 19006  SubGrpcsubg 19059  odcod 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-od 19465
This theorem is referenced by:  0subgALT  19505  finsubmsubg  42505
  Copyright terms: Public domain W3C validator