| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finodsubmsubg | Structured version Visualization version GIF version | ||
| Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| finodsubmsubg.o | ⊢ 𝑂 = (od‘𝐺) |
| finodsubmsubg.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| finodsubmsubg.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
| finodsubmsubg.1 | ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ) |
| Ref | Expression |
|---|---|
| finodsubmsubg | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finodsubmsubg.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
| 2 | finodsubmsubg.1 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | finodsubmsubg.o | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 7 | finodsubmsubg.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 9 | 3 | submss 18712 | . . . . . . . . . 10 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 10 | 1, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
| 11 | 10 | sselda 3943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (Base‘𝐺)) |
| 12 | 3, 4, 5, 6, 8, 11 | odm1inv 19459 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = ((invg‘𝐺)‘𝑎)) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = ((invg‘𝐺)‘𝑎)) |
| 14 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (.g‘(𝐺 ↾s 𝑆)) = (.g‘(𝐺 ↾s 𝑆)) | |
| 16 | eqid 2729 | . . . . . . . . . . 11 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 17 | 16 | submmnd 18716 | . . . . . . . . . 10 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 18 | 1, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 19 | 18 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 20 | nnm1nn0 12459 | . . . . . . . . 9 ⊢ ((𝑂‘𝑎) ∈ ℕ → ((𝑂‘𝑎) − 1) ∈ ℕ0) | |
| 21 | 20 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → ((𝑂‘𝑎) − 1) ∈ ℕ0) |
| 22 | simplr 768 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑎 ∈ 𝑆) | |
| 23 | 16, 3 | ressbas2 17184 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 24 | 10, 23 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 25 | 24 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 26 | 22, 25 | eleqtrd 2830 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 27 | 14, 15, 19, 21, 26 | mulgnn0cld 19003 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 28 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺)) |
| 29 | 5, 16, 15 | submmulg 19026 | . . . . . . . 8 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂‘𝑎) − 1) ∈ ℕ0 ∧ 𝑎 ∈ 𝑆) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎)) |
| 30 | 28, 21, 22, 29 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎)) |
| 31 | 27, 30, 25 | 3eltr4d 2843 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) ∈ 𝑆) |
| 32 | 13, 31 | eqeltrrd 2829 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 33 | 32 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑂‘𝑎) ∈ ℕ → ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 34 | 33 | ralimdva 3145 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ → ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 35 | 2, 34 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 36 | 6 | issubg3 19052 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆))) |
| 37 | 7, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆))) |
| 38 | 1, 35, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 1c1 11045 − cmin 11381 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 Mndcmnd 18637 SubMndcsubmnd 18685 Grpcgrp 18841 invgcminusg 18842 .gcmg 18975 SubGrpcsubg 19028 odcod 19430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-od 19434 |
| This theorem is referenced by: 0subgALT 19474 finsubmsubg 42471 |
| Copyright terms: Public domain | W3C validator |