MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finodsubmsubg Structured version   Visualization version   GIF version

Theorem finodsubmsubg 19600
Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
finodsubmsubg.o 𝑂 = (od‘𝐺)
finodsubmsubg.g (𝜑𝐺 ∈ Grp)
finodsubmsubg.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
finodsubmsubg.1 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
Assertion
Ref Expression
finodsubmsubg (𝜑𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑆,𝑎   𝐺,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑂(𝑎)

Proof of Theorem finodsubmsubg
StepHypRef Expression
1 finodsubmsubg.s . 2 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 finodsubmsubg.1 . . 3 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
3 eqid 2735 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
4 finodsubmsubg.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 eqid 2735 . . . . . . . 8 (.g𝐺) = (.g𝐺)
6 eqid 2735 . . . . . . . 8 (invg𝐺) = (invg𝐺)
7 finodsubmsubg.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
87adantr 480 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
93submss 18835 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
101, 9syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝐺))
1110sselda 3995 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ (Base‘𝐺))
123, 4, 5, 6, 8, 11odm1inv 19586 . . . . . . 7 ((𝜑𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
1312adantr 480 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
14 eqid 2735 . . . . . . . 8 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
15 eqid 2735 . . . . . . . 8 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
16 eqid 2735 . . . . . . . . . . 11 (𝐺s 𝑆) = (𝐺s 𝑆)
1716submmnd 18839 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺s 𝑆) ∈ Mnd)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (𝐺s 𝑆) ∈ Mnd)
1918ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (𝐺s 𝑆) ∈ Mnd)
20 nnm1nn0 12565 . . . . . . . . 9 ((𝑂𝑎) ∈ ℕ → ((𝑂𝑎) − 1) ∈ ℕ0)
2120adantl 481 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((𝑂𝑎) − 1) ∈ ℕ0)
22 simplr 769 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎𝑆)
2316, 3ressbas2 17283 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2410, 23syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝐺s 𝑆)))
2524ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺s 𝑆)))
2622, 25eleqtrd 2841 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺s 𝑆)))
2714, 15, 19, 21, 26mulgnn0cld 19126 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎) ∈ (Base‘(𝐺s 𝑆)))
281ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
295, 16, 15submmulg 19149 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂𝑎) − 1) ∈ ℕ0𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3028, 21, 22, 29syl3anc 1370 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3127, 30, 253eltr4d 2854 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) ∈ 𝑆)
3213, 31eqeltrrd 2840 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((invg𝐺)‘𝑎) ∈ 𝑆)
3332ex 412 . . . 4 ((𝜑𝑎𝑆) → ((𝑂𝑎) ∈ ℕ → ((invg𝐺)‘𝑎) ∈ 𝑆))
3433ralimdva 3165 . . 3 (𝜑 → (∀𝑎𝑆 (𝑂𝑎) ∈ ℕ → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆))
352, 34mpd 15 . 2 (𝜑 → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)
366issubg3 19175 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
377, 36syl 17 . 2 (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
381, 35, 37mpbir2and 713 1 (𝜑𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  cfv 6563  (class class class)co 7431  1c1 11154  cmin 11490  cn 12264  0cn0 12524  Basecbs 17245  s cress 17274  Mndcmnd 18760  SubMndcsubmnd 18808  Grpcgrp 18964  invgcminusg 18965  .gcmg 19098  SubGrpcsubg 19151  odcod 19557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-od 19561
This theorem is referenced by:  0subgALT  19601  finsubmsubg  42497
  Copyright terms: Public domain W3C validator