| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finodsubmsubg | Structured version Visualization version GIF version | ||
| Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| finodsubmsubg.o | ⊢ 𝑂 = (od‘𝐺) |
| finodsubmsubg.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| finodsubmsubg.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
| finodsubmsubg.1 | ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ) |
| Ref | Expression |
|---|---|
| finodsubmsubg | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finodsubmsubg.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
| 2 | finodsubmsubg.1 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ) | |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | finodsubmsubg.o | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 7 | finodsubmsubg.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 9 | 3 | submss 18683 | . . . . . . . . . 10 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 10 | 1, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
| 11 | 10 | sselda 3935 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (Base‘𝐺)) |
| 12 | 3, 4, 5, 6, 8, 11 | odm1inv 19432 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = ((invg‘𝐺)‘𝑎)) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = ((invg‘𝐺)‘𝑎)) |
| 14 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (.g‘(𝐺 ↾s 𝑆)) = (.g‘(𝐺 ↾s 𝑆)) | |
| 16 | eqid 2729 | . . . . . . . . . . 11 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 17 | 16 | submmnd 18687 | . . . . . . . . . 10 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 18 | 1, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 19 | 18 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 20 | nnm1nn0 12425 | . . . . . . . . 9 ⊢ ((𝑂‘𝑎) ∈ ℕ → ((𝑂‘𝑎) − 1) ∈ ℕ0) | |
| 21 | 20 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → ((𝑂‘𝑎) − 1) ∈ ℕ0) |
| 22 | simplr 768 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑎 ∈ 𝑆) | |
| 23 | 16, 3 | ressbas2 17149 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 24 | 10, 23 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 25 | 24 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 26 | 22, 25 | eleqtrd 2830 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 27 | 14, 15, 19, 21, 26 | mulgnn0cld 18974 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 28 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺)) |
| 29 | 5, 16, 15 | submmulg 18997 | . . . . . . . 8 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂‘𝑎) − 1) ∈ ℕ0 ∧ 𝑎 ∈ 𝑆) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎)) |
| 30 | 28, 21, 22, 29 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎)) |
| 31 | 27, 30, 25 | 3eltr4d 2843 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) ∈ 𝑆) |
| 32 | 13, 31 | eqeltrrd 2829 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 33 | 32 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑂‘𝑎) ∈ ℕ → ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 34 | 33 | ralimdva 3141 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ → ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 35 | 2, 34 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 36 | 6 | issubg3 19023 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆))) |
| 37 | 7, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆))) |
| 38 | 1, 35, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 1c1 11010 − cmin 11347 ℕcn 12128 ℕ0cn0 12384 Basecbs 17120 ↾s cress 17141 Mndcmnd 18608 SubMndcsubmnd 18656 Grpcgrp 18812 invgcminusg 18813 .gcmg 18946 SubGrpcsubg 18999 odcod 19403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-seq 13909 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-od 19407 |
| This theorem is referenced by: 0subgALT 19447 finsubmsubg 42487 |
| Copyright terms: Public domain | W3C validator |