MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finodsubmsubg Structured version   Visualization version   GIF version

Theorem finodsubmsubg 19553
Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
finodsubmsubg.o 𝑂 = (od‘𝐺)
finodsubmsubg.g (𝜑𝐺 ∈ Grp)
finodsubmsubg.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
finodsubmsubg.1 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
Assertion
Ref Expression
finodsubmsubg (𝜑𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑆,𝑎   𝐺,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑂(𝑎)

Proof of Theorem finodsubmsubg
StepHypRef Expression
1 finodsubmsubg.s . 2 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 finodsubmsubg.1 . . 3 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
3 eqid 2734 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
4 finodsubmsubg.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 eqid 2734 . . . . . . . 8 (.g𝐺) = (.g𝐺)
6 eqid 2734 . . . . . . . 8 (invg𝐺) = (invg𝐺)
7 finodsubmsubg.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
87adantr 480 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
93submss 18791 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
101, 9syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝐺))
1110sselda 3963 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ (Base‘𝐺))
123, 4, 5, 6, 8, 11odm1inv 19539 . . . . . . 7 ((𝜑𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
1312adantr 480 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
14 eqid 2734 . . . . . . . 8 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
15 eqid 2734 . . . . . . . 8 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
16 eqid 2734 . . . . . . . . . . 11 (𝐺s 𝑆) = (𝐺s 𝑆)
1716submmnd 18795 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺s 𝑆) ∈ Mnd)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (𝐺s 𝑆) ∈ Mnd)
1918ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (𝐺s 𝑆) ∈ Mnd)
20 nnm1nn0 12550 . . . . . . . . 9 ((𝑂𝑎) ∈ ℕ → ((𝑂𝑎) − 1) ∈ ℕ0)
2120adantl 481 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((𝑂𝑎) − 1) ∈ ℕ0)
22 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎𝑆)
2316, 3ressbas2 17261 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2410, 23syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝐺s 𝑆)))
2524ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺s 𝑆)))
2622, 25eleqtrd 2835 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺s 𝑆)))
2714, 15, 19, 21, 26mulgnn0cld 19082 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎) ∈ (Base‘(𝐺s 𝑆)))
281ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
295, 16, 15submmulg 19105 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂𝑎) − 1) ∈ ℕ0𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3028, 21, 22, 29syl3anc 1372 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3127, 30, 253eltr4d 2848 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) ∈ 𝑆)
3213, 31eqeltrrd 2834 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((invg𝐺)‘𝑎) ∈ 𝑆)
3332ex 412 . . . 4 ((𝜑𝑎𝑆) → ((𝑂𝑎) ∈ ℕ → ((invg𝐺)‘𝑎) ∈ 𝑆))
3433ralimdva 3154 . . 3 (𝜑 → (∀𝑎𝑆 (𝑂𝑎) ∈ ℕ → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆))
352, 34mpd 15 . 2 (𝜑 → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)
366issubg3 19131 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
377, 36syl 17 . 2 (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
381, 35, 37mpbir2and 713 1 (𝜑𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wss 3931  cfv 6541  (class class class)co 7413  1c1 11138  cmin 11474  cn 12248  0cn0 12509  Basecbs 17229  s cress 17252  Mndcmnd 18716  SubMndcsubmnd 18764  Grpcgrp 18920  invgcminusg 18921  .gcmg 19054  SubGrpcsubg 19107  odcod 19510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-seq 14025  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-od 19514
This theorem is referenced by:  0subgALT  19554  finsubmsubg  42483
  Copyright terms: Public domain W3C validator