MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finodsubmsubg Structured version   Visualization version   GIF version

Theorem finodsubmsubg 19609
Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
finodsubmsubg.o 𝑂 = (od‘𝐺)
finodsubmsubg.g (𝜑𝐺 ∈ Grp)
finodsubmsubg.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
finodsubmsubg.1 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
Assertion
Ref Expression
finodsubmsubg (𝜑𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑆,𝑎   𝐺,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑂(𝑎)

Proof of Theorem finodsubmsubg
StepHypRef Expression
1 finodsubmsubg.s . 2 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 finodsubmsubg.1 . . 3 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
3 eqid 2740 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
4 finodsubmsubg.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 eqid 2740 . . . . . . . 8 (.g𝐺) = (.g𝐺)
6 eqid 2740 . . . . . . . 8 (invg𝐺) = (invg𝐺)
7 finodsubmsubg.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
87adantr 480 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
93submss 18844 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
101, 9syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝐺))
1110sselda 4008 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ (Base‘𝐺))
123, 4, 5, 6, 8, 11odm1inv 19595 . . . . . . 7 ((𝜑𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
1312adantr 480 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
14 eqid 2740 . . . . . . . 8 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
15 eqid 2740 . . . . . . . 8 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
16 eqid 2740 . . . . . . . . . . 11 (𝐺s 𝑆) = (𝐺s 𝑆)
1716submmnd 18848 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺s 𝑆) ∈ Mnd)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (𝐺s 𝑆) ∈ Mnd)
1918ad2antrr 725 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (𝐺s 𝑆) ∈ Mnd)
20 nnm1nn0 12594 . . . . . . . . 9 ((𝑂𝑎) ∈ ℕ → ((𝑂𝑎) − 1) ∈ ℕ0)
2120adantl 481 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((𝑂𝑎) − 1) ∈ ℕ0)
22 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎𝑆)
2316, 3ressbas2 17296 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2410, 23syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝐺s 𝑆)))
2524ad2antrr 725 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺s 𝑆)))
2622, 25eleqtrd 2846 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺s 𝑆)))
2714, 15, 19, 21, 26mulgnn0cld 19135 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎) ∈ (Base‘(𝐺s 𝑆)))
281ad2antrr 725 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
295, 16, 15submmulg 19158 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂𝑎) − 1) ∈ ℕ0𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3028, 21, 22, 29syl3anc 1371 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3127, 30, 253eltr4d 2859 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) ∈ 𝑆)
3213, 31eqeltrrd 2845 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((invg𝐺)‘𝑎) ∈ 𝑆)
3332ex 412 . . . 4 ((𝜑𝑎𝑆) → ((𝑂𝑎) ∈ ℕ → ((invg𝐺)‘𝑎) ∈ 𝑆))
3433ralimdva 3173 . . 3 (𝜑 → (∀𝑎𝑆 (𝑂𝑎) ∈ ℕ → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆))
352, 34mpd 15 . 2 (𝜑 → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)
366issubg3 19184 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
377, 36syl 17 . 2 (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
381, 35, 37mpbir2and 712 1 (𝜑𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  1c1 11185  cmin 11520  cn 12293  0cn0 12553  Basecbs 17258  s cress 17287  Mndcmnd 18772  SubMndcsubmnd 18817  Grpcgrp 18973  invgcminusg 18974  .gcmg 19107  SubGrpcsubg 19160  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-od 19570
This theorem is referenced by:  0subgALT  19610  finsubmsubg  42465
  Copyright terms: Public domain W3C validator