| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finodsubmsubg | Structured version Visualization version GIF version | ||
| Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| finodsubmsubg.o | ⊢ 𝑂 = (od‘𝐺) |
| finodsubmsubg.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| finodsubmsubg.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
| finodsubmsubg.1 | ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ) |
| Ref | Expression |
|---|---|
| finodsubmsubg | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finodsubmsubg.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
| 2 | finodsubmsubg.1 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ) | |
| 3 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | finodsubmsubg.o | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 5 | eqid 2730 | . . . . . . . 8 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | eqid 2730 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 7 | finodsubmsubg.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 9 | 3 | submss 18743 | . . . . . . . . . 10 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 10 | 1, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
| 11 | 10 | sselda 3949 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (Base‘𝐺)) |
| 12 | 3, 4, 5, 6, 8, 11 | odm1inv 19490 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = ((invg‘𝐺)‘𝑎)) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = ((invg‘𝐺)‘𝑎)) |
| 14 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 15 | eqid 2730 | . . . . . . . 8 ⊢ (.g‘(𝐺 ↾s 𝑆)) = (.g‘(𝐺 ↾s 𝑆)) | |
| 16 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 17 | 16 | submmnd 18747 | . . . . . . . . . 10 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 18 | 1, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 19 | 18 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 20 | nnm1nn0 12490 | . . . . . . . . 9 ⊢ ((𝑂‘𝑎) ∈ ℕ → ((𝑂‘𝑎) − 1) ∈ ℕ0) | |
| 21 | 20 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → ((𝑂‘𝑎) − 1) ∈ ℕ0) |
| 22 | simplr 768 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑎 ∈ 𝑆) | |
| 23 | 16, 3 | ressbas2 17215 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 24 | 10, 23 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 25 | 24 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 26 | 22, 25 | eleqtrd 2831 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 27 | 14, 15, 19, 21, 26 | mulgnn0cld 19034 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 28 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺)) |
| 29 | 5, 16, 15 | submmulg 19057 | . . . . . . . 8 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂‘𝑎) − 1) ∈ ℕ0 ∧ 𝑎 ∈ 𝑆) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎)) |
| 30 | 28, 21, 22, 29 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎)) |
| 31 | 27, 30, 25 | 3eltr4d 2844 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) ∈ 𝑆) |
| 32 | 13, 31 | eqeltrrd 2830 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 33 | 32 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑂‘𝑎) ∈ ℕ → ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 34 | 33 | ralimdva 3146 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ → ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 35 | 2, 34 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 36 | 6 | issubg3 19083 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆))) |
| 37 | 7, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆))) |
| 38 | 1, 35, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 1c1 11076 − cmin 11412 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 ↾s cress 17207 Mndcmnd 18668 SubMndcsubmnd 18716 Grpcgrp 18872 invgcminusg 18873 .gcmg 19006 SubGrpcsubg 19059 odcod 19461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-seq 13974 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-od 19465 |
| This theorem is referenced by: 0subgALT 19505 finsubmsubg 42505 |
| Copyright terms: Public domain | W3C validator |