| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finodsubmsubg | Structured version Visualization version GIF version | ||
| Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| finodsubmsubg.o | ⊢ 𝑂 = (od‘𝐺) |
| finodsubmsubg.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| finodsubmsubg.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
| finodsubmsubg.1 | ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ) |
| Ref | Expression |
|---|---|
| finodsubmsubg | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finodsubmsubg.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
| 2 | finodsubmsubg.1 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ) | |
| 3 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | finodsubmsubg.o | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
| 5 | eqid 2735 | . . . . . . . 8 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | eqid 2735 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 7 | finodsubmsubg.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 9 | 3 | submss 18787 | . . . . . . . . . 10 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 10 | 1, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
| 11 | 10 | sselda 3958 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (Base‘𝐺)) |
| 12 | 3, 4, 5, 6, 8, 11 | odm1inv 19534 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = ((invg‘𝐺)‘𝑎)) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = ((invg‘𝐺)‘𝑎)) |
| 14 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 15 | eqid 2735 | . . . . . . . 8 ⊢ (.g‘(𝐺 ↾s 𝑆)) = (.g‘(𝐺 ↾s 𝑆)) | |
| 16 | eqid 2735 | . . . . . . . . . . 11 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 17 | 16 | submmnd 18791 | . . . . . . . . . 10 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 18 | 1, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 19 | 18 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 20 | nnm1nn0 12542 | . . . . . . . . 9 ⊢ ((𝑂‘𝑎) ∈ ℕ → ((𝑂‘𝑎) − 1) ∈ ℕ0) | |
| 21 | 20 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → ((𝑂‘𝑎) − 1) ∈ ℕ0) |
| 22 | simplr 768 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑎 ∈ 𝑆) | |
| 23 | 16, 3 | ressbas2 17259 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 24 | 10, 23 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 25 | 24 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 26 | 22, 25 | eleqtrd 2836 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 27 | 14, 15, 19, 21, 26 | mulgnn0cld 19078 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 28 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺)) |
| 29 | 5, 16, 15 | submmulg 19101 | . . . . . . . 8 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂‘𝑎) − 1) ∈ ℕ0 ∧ 𝑎 ∈ 𝑆) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎)) |
| 30 | 28, 21, 22, 29 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) = (((𝑂‘𝑎) − 1)(.g‘(𝐺 ↾s 𝑆))𝑎)) |
| 31 | 27, 30, 25 | 3eltr4d 2849 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → (((𝑂‘𝑎) − 1)(.g‘𝐺)𝑎) ∈ 𝑆) |
| 32 | 13, 31 | eqeltrrd 2835 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑂‘𝑎) ∈ ℕ) → ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 33 | 32 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑂‘𝑎) ∈ ℕ → ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 34 | 33 | ralimdva 3152 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝑆 (𝑂‘𝑎) ∈ ℕ → ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 35 | 2, 34 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 36 | 6 | issubg3 19127 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆))) |
| 37 | 7, 36 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ 𝑆 ((invg‘𝐺)‘𝑎) ∈ 𝑆))) |
| 38 | 1, 35, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 1c1 11130 − cmin 11466 ℕcn 12240 ℕ0cn0 12501 Basecbs 17228 ↾s cress 17251 Mndcmnd 18712 SubMndcsubmnd 18760 Grpcgrp 18916 invgcminusg 18917 .gcmg 19050 SubGrpcsubg 19103 odcod 19505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-seq 14020 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-od 19509 |
| This theorem is referenced by: 0subgALT 19549 finsubmsubg 42533 |
| Copyright terms: Public domain | W3C validator |