MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finodsubmsubg Structured version   Visualization version   GIF version

Theorem finodsubmsubg 19479
Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
finodsubmsubg.o 𝑂 = (od‘𝐺)
finodsubmsubg.g (𝜑𝐺 ∈ Grp)
finodsubmsubg.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
finodsubmsubg.1 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
Assertion
Ref Expression
finodsubmsubg (𝜑𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑆,𝑎   𝐺,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑂(𝑎)

Proof of Theorem finodsubmsubg
StepHypRef Expression
1 finodsubmsubg.s . 2 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 finodsubmsubg.1 . . 3 (𝜑 → ∀𝑎𝑆 (𝑂𝑎) ∈ ℕ)
3 eqid 2731 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
4 finodsubmsubg.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 eqid 2731 . . . . . . . 8 (.g𝐺) = (.g𝐺)
6 eqid 2731 . . . . . . . 8 (invg𝐺) = (invg𝐺)
7 finodsubmsubg.g . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
87adantr 480 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
93submss 18717 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
101, 9syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝐺))
1110sselda 3929 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ (Base‘𝐺))
123, 4, 5, 6, 8, 11odm1inv 19465 . . . . . . 7 ((𝜑𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
1312adantr 480 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = ((invg𝐺)‘𝑎))
14 eqid 2731 . . . . . . . 8 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
15 eqid 2731 . . . . . . . 8 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
16 eqid 2731 . . . . . . . . . . 11 (𝐺s 𝑆) = (𝐺s 𝑆)
1716submmnd 18721 . . . . . . . . . 10 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺s 𝑆) ∈ Mnd)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (𝐺s 𝑆) ∈ Mnd)
1918ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (𝐺s 𝑆) ∈ Mnd)
20 nnm1nn0 12422 . . . . . . . . 9 ((𝑂𝑎) ∈ ℕ → ((𝑂𝑎) − 1) ∈ ℕ0)
2120adantl 481 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((𝑂𝑎) − 1) ∈ ℕ0)
22 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎𝑆)
2316, 3ressbas2 17149 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
2410, 23syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝐺s 𝑆)))
2524ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 = (Base‘(𝐺s 𝑆)))
2622, 25eleqtrd 2833 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑎 ∈ (Base‘(𝐺s 𝑆)))
2714, 15, 19, 21, 26mulgnn0cld 19008 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎) ∈ (Base‘(𝐺s 𝑆)))
281ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
295, 16, 15submmulg 19031 . . . . . . . 8 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ((𝑂𝑎) − 1) ∈ ℕ0𝑎𝑆) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3028, 21, 22, 29syl3anc 1373 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) = (((𝑂𝑎) − 1)(.g‘(𝐺s 𝑆))𝑎))
3127, 30, 253eltr4d 2846 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → (((𝑂𝑎) − 1)(.g𝐺)𝑎) ∈ 𝑆)
3213, 31eqeltrrd 2832 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑂𝑎) ∈ ℕ) → ((invg𝐺)‘𝑎) ∈ 𝑆)
3332ex 412 . . . 4 ((𝜑𝑎𝑆) → ((𝑂𝑎) ∈ ℕ → ((invg𝐺)‘𝑎) ∈ 𝑆))
3433ralimdva 3144 . . 3 (𝜑 → (∀𝑎𝑆 (𝑂𝑎) ∈ ℕ → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆))
352, 34mpd 15 . 2 (𝜑 → ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)
366issubg3 19057 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
377, 36syl 17 . 2 (𝜑 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑎𝑆 ((invg𝐺)‘𝑎) ∈ 𝑆)))
381, 35, 37mpbir2and 713 1 (𝜑𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  cfv 6481  (class class class)co 7346  1c1 11007  cmin 11344  cn 12125  0cn0 12381  Basecbs 17120  s cress 17141  Mndcmnd 18642  SubMndcsubmnd 18690  Grpcgrp 18846  invgcminusg 18847  .gcmg 18980  SubGrpcsubg 19033  odcod 19436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-od 19440
This theorem is referenced by:  0subgALT  19480  finsubmsubg  42613
  Copyright terms: Public domain W3C validator