MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulgid Structured version   Visualization version   GIF version

Theorem odmulgid 19386
Description: A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odmulgid (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝑂𝐴) ∥ (𝐾 · 𝑁)))

Proof of Theorem odmulgid
StepHypRef Expression
1 simpl1 1191 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐺 ∈ Grp)
2 simpr 485 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
3 simpl3 1193 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
4 simpl2 1192 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐴𝑋)
5 odmulgid.1 . . . . 5 𝑋 = (Base‘𝐺)
6 odmulgid.3 . . . . 5 · = (.g𝐺)
75, 6mulgass 18963 . . . 4 ((𝐺 ∈ Grp ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝐾 · 𝑁) · 𝐴) = (𝐾 · (𝑁 · 𝐴)))
81, 2, 3, 4, 7syl13anc 1372 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑁) · 𝐴) = (𝐾 · (𝑁 · 𝐴)))
98eqeq1d 2733 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((𝐾 · 𝑁) · 𝐴) = (0g𝐺) ↔ (𝐾 · (𝑁 · 𝐴)) = (0g𝐺)))
102, 3zmulcld 12654 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
11 odmulgid.2 . . . 4 𝑂 = (od‘𝐺)
12 eqid 2731 . . . 4 (0g𝐺) = (0g𝐺)
135, 11, 6, 12oddvds 19379 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝑂𝐴) ∥ (𝐾 · 𝑁) ↔ ((𝐾 · 𝑁) · 𝐴) = (0g𝐺)))
141, 4, 10, 13syl3anc 1371 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂𝐴) ∥ (𝐾 · 𝑁) ↔ ((𝐾 · 𝑁) · 𝐴) = (0g𝐺)))
155, 6mulgcl 18943 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
161, 3, 4, 15syl3anc 1371 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐴) ∈ 𝑋)
175, 11, 6, 12oddvds 19379 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝐾 · (𝑁 · 𝐴)) = (0g𝐺)))
181, 16, 2, 17syl3anc 1371 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝐾 · (𝑁 · 𝐴)) = (0g𝐺)))
199, 14, 183bitr4rd 311 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝑂𝐴) ∥ (𝐾 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5141  cfv 6532  (class class class)co 7393   · cmul 11097  cz 12540  cdvds 16179  Basecbs 17126  0gc0g 17367  Grpcgrp 18794  .gcmg 18922  odcod 19356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-fz 13467  df-fl 13739  df-mod 13817  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-dvds 16180  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-minusg 18798  df-sbg 18799  df-mulg 18923  df-od 19360
This theorem is referenced by:  odmulg2  19387  odmulg  19388  ablfacrp  19895
  Copyright terms: Public domain W3C validator