![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odmulgid | Structured version Visualization version GIF version |
Description: A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
odmulgid.1 | ⊢ 𝑋 = (Base‘𝐺) |
odmulgid.2 | ⊢ 𝑂 = (od‘𝐺) |
odmulgid.3 | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
odmulgid | ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝑂‘𝐴) ∥ (𝐾 · 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1171 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐺 ∈ Grp) | |
2 | simpr 477 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ) | |
3 | simpl3 1173 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ) | |
4 | simpl2 1172 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
5 | odmulgid.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
6 | odmulgid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
7 | 5, 6 | mulgass 18042 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝐾 · 𝑁) · 𝐴) = (𝐾 · (𝑁 · 𝐴))) |
8 | 1, 2, 3, 4, 7 | syl13anc 1352 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑁) · 𝐴) = (𝐾 · (𝑁 · 𝐴))) |
9 | 8 | eqeq1d 2774 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((𝐾 · 𝑁) · 𝐴) = (0g‘𝐺) ↔ (𝐾 · (𝑁 · 𝐴)) = (0g‘𝐺))) |
10 | 2, 3 | zmulcld 11900 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) |
11 | odmulgid.2 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
12 | eqid 2772 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
13 | 5, 11, 6, 12 | oddvds 18431 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝑂‘𝐴) ∥ (𝐾 · 𝑁) ↔ ((𝐾 · 𝑁) · 𝐴) = (0g‘𝐺))) |
14 | 1, 4, 10, 13 | syl3anc 1351 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘𝐴) ∥ (𝐾 · 𝑁) ↔ ((𝐾 · 𝑁) · 𝐴) = (0g‘𝐺))) |
15 | 5, 6 | mulgcl 18024 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑁 · 𝐴) ∈ 𝑋) |
16 | 1, 3, 4, 15 | syl3anc 1351 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐴) ∈ 𝑋) |
17 | 5, 11, 6, 12 | oddvds 18431 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋 ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝐾 · (𝑁 · 𝐴)) = (0g‘𝐺))) |
18 | 1, 16, 2, 17 | syl3anc 1351 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝐾 · (𝑁 · 𝐴)) = (0g‘𝐺))) |
19 | 9, 14, 18 | 3bitr4rd 304 | 1 ⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝑂‘𝐴) ∥ (𝐾 · 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 · cmul 10334 ℤcz 11787 ∥ cdvds 15461 Basecbs 16333 0gc0g 16563 Grpcgrp 17885 .gcmg 18005 odcod 18408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-sup 8695 df-inf 8696 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-n0 11702 df-z 11788 df-uz 12053 df-rp 12199 df-fz 12703 df-fl 12971 df-mod 13047 df-seq 13179 df-exp 13239 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-dvds 15462 df-0g 16565 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-grp 17888 df-minusg 17889 df-sbg 17890 df-mulg 18006 df-od 18412 |
This theorem is referenced by: odmulg2 18437 odmulg 18438 ablfacrp 18932 |
Copyright terms: Public domain | W3C validator |