MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulgid Structured version   Visualization version   GIF version

Theorem odmulgid 19161
Description: A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odmulgid (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝑂𝐴) ∥ (𝐾 · 𝑁)))

Proof of Theorem odmulgid
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐺 ∈ Grp)
2 simpr 485 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
3 simpl3 1192 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
4 simpl2 1191 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → 𝐴𝑋)
5 odmulgid.1 . . . . 5 𝑋 = (Base‘𝐺)
6 odmulgid.3 . . . . 5 · = (.g𝐺)
75, 6mulgass 18740 . . . 4 ((𝐺 ∈ Grp ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝐾 · 𝑁) · 𝐴) = (𝐾 · (𝑁 · 𝐴)))
81, 2, 3, 4, 7syl13anc 1371 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑁) · 𝐴) = (𝐾 · (𝑁 · 𝐴)))
98eqeq1d 2740 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((𝐾 · 𝑁) · 𝐴) = (0g𝐺) ↔ (𝐾 · (𝑁 · 𝐴)) = (0g𝐺)))
102, 3zmulcld 12432 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
11 odmulgid.2 . . . 4 𝑂 = (od‘𝐺)
12 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
135, 11, 6, 12oddvds 19155 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝑂𝐴) ∥ (𝐾 · 𝑁) ↔ ((𝐾 · 𝑁) · 𝐴) = (0g𝐺)))
141, 4, 10, 13syl3anc 1370 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂𝐴) ∥ (𝐾 · 𝑁) ↔ ((𝐾 · 𝑁) · 𝐴) = (0g𝐺)))
155, 6mulgcl 18721 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
161, 3, 4, 15syl3anc 1370 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐴) ∈ 𝑋)
175, 11, 6, 12oddvds 19155 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 · 𝐴) ∈ 𝑋𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝐾 · (𝑁 · 𝐴)) = (0g𝐺)))
181, 16, 2, 17syl3anc 1370 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝐾 · (𝑁 · 𝐴)) = (0g𝐺)))
199, 14, 183bitr4rd 312 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝐾 ↔ (𝑂𝐴) ∥ (𝐾 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275   · cmul 10876  cz 12319  cdvds 15963  Basecbs 16912  0gc0g 17150  Grpcgrp 18577  .gcmg 18700  odcod 19132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-od 19136
This theorem is referenced by:  odmulg2  19162  odmulg  19163  ablfacrp  19669
  Copyright terms: Public domain W3C validator