MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass3 Structured version   Visualization version   GIF version

Theorem mulgass3 20269
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b 𝐵 = (Base‘𝑅)
mulgass3.m · = (.g𝑅)
mulgass3.t × = (.r𝑅)
Assertion
Ref Expression
mulgass3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 (oppr𝑅) = (oppr𝑅)
21opprring 20263 . . . . 5 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
32adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (oppr𝑅) ∈ Ring)
4 simpr1 1195 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑁 ∈ ℤ)
5 simpr3 1197 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
6 simpr2 1196 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
7 mulgass3.b . . . . . 6 𝐵 = (Base‘𝑅)
81, 7opprbas 20259 . . . . 5 𝐵 = (Base‘(oppr𝑅))
9 eqid 2731 . . . . 5 (.g‘(oppr𝑅)) = (.g‘(oppr𝑅))
10 eqid 2731 . . . . 5 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
118, 9, 10mulgass2 20225 . . . 4 (((oppr𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌𝐵𝑋𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
123, 4, 5, 6, 11syl13anc 1374 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
13 mulgass3.t . . . 4 × = (.r𝑅)
147, 13, 1, 10opprmul 20256 . . 3 ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌))
157, 13, 1, 10opprmul 20256 . . . 4 (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 × 𝑌)
1615oveq2i 7357 . . 3 (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌))
1712, 14, 163eqtr3g 2789 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
18 mulgass3.m . . . . 5 · = (.g𝑅)
197a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘𝑅))
208a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘(oppr𝑅)))
21 ssv 3959 . . . . . 6 𝐵 ⊆ V
2221a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ V)
23 ovexd 7381 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑅)𝑦) ∈ V)
24 eqid 2731 . . . . . . . 8 (+g𝑅) = (+g𝑅)
251, 24oppradd 20260 . . . . . . 7 (+g𝑅) = (+g‘(oppr𝑅))
2625oveqi 7359 . . . . . 6 (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦)
2726a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
2818, 9, 19, 20, 22, 23, 27mulgpropd 19026 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → · = (.g‘(oppr𝑅)))
2928oveqd 7363 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr𝑅))𝑌))
3029oveq2d 7362 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
3128oveqd 7363 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
3217, 30, 313eqtr4d 2776 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  cfv 6481  (class class class)co 7346  cz 12465  Basecbs 17117  +gcplusg 17158  .rcmulr 17159  .gcmg 18977  Ringcrg 20149  opprcoppr 20252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-seq 13906  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-mulg 18978  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253
This theorem is referenced by:  zlmassa  21838  psdvsca  22077  psdmul  22079  elrgspnlem2  33205
  Copyright terms: Public domain W3C validator