MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass3 Structured version   Visualization version   GIF version

Theorem mulgass3 20262
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b 𝐵 = (Base‘𝑅)
mulgass3.m · = (.g𝑅)
mulgass3.t × = (.r𝑅)
Assertion
Ref Expression
mulgass3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (oppr𝑅) = (oppr𝑅)
21opprring 20256 . . . . 5 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
32adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (oppr𝑅) ∈ Ring)
4 simpr1 1195 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑁 ∈ ℤ)
5 simpr3 1197 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
6 simpr2 1196 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
7 mulgass3.b . . . . . 6 𝐵 = (Base‘𝑅)
81, 7opprbas 20252 . . . . 5 𝐵 = (Base‘(oppr𝑅))
9 eqid 2729 . . . . 5 (.g‘(oppr𝑅)) = (.g‘(oppr𝑅))
10 eqid 2729 . . . . 5 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
118, 9, 10mulgass2 20218 . . . 4 (((oppr𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌𝐵𝑋𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
123, 4, 5, 6, 11syl13anc 1374 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
13 mulgass3.t . . . 4 × = (.r𝑅)
147, 13, 1, 10opprmul 20249 . . 3 ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌))
157, 13, 1, 10opprmul 20249 . . . 4 (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 × 𝑌)
1615oveq2i 7398 . . 3 (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌))
1712, 14, 163eqtr3g 2787 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
18 mulgass3.m . . . . 5 · = (.g𝑅)
197a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘𝑅))
208a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘(oppr𝑅)))
21 ssv 3971 . . . . . 6 𝐵 ⊆ V
2221a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ V)
23 ovexd 7422 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑅)𝑦) ∈ V)
24 eqid 2729 . . . . . . . 8 (+g𝑅) = (+g𝑅)
251, 24oppradd 20253 . . . . . . 7 (+g𝑅) = (+g‘(oppr𝑅))
2625oveqi 7400 . . . . . 6 (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦)
2726a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
2818, 9, 19, 20, 22, 23, 27mulgpropd 19048 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → · = (.g‘(oppr𝑅)))
2928oveqd 7404 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr𝑅))𝑌))
3029oveq2d 7403 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
3128oveqd 7404 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
3217, 30, 313eqtr4d 2774 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  cfv 6511  (class class class)co 7387  cz 12529  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  .gcmg 18999  Ringcrg 20142  opprcoppr 20245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-mulg 19000  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246
This theorem is referenced by:  zlmassa  21812  psdvsca  22051  psdmul  22053  elrgspnlem2  33194
  Copyright terms: Public domain W3C validator