![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgass3 | Structured version Visualization version GIF version |
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
mulgass3.b | ⊢ 𝐵 = (Base‘𝑅) |
mulgass3.m | ⊢ · = (.g‘𝑅) |
mulgass3.t | ⊢ × = (.r‘𝑅) |
Ref | Expression |
---|---|
mulgass3 | ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | 1 | opprring 20364 | . . . . 5 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (oppr‘𝑅) ∈ Ring) |
4 | simpr1 1193 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑁 ∈ ℤ) | |
5 | simpr3 1195 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
6 | simpr2 1194 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | mulgass3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 1, 7 | opprbas 20358 | . . . . 5 ⊢ 𝐵 = (Base‘(oppr‘𝑅)) |
9 | eqid 2735 | . . . . 5 ⊢ (.g‘(oppr‘𝑅)) = (.g‘(oppr‘𝑅)) | |
10 | eqid 2735 | . . . . 5 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
11 | 8, 9, 10 | mulgass2 20323 | . . . 4 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
12 | 3, 4, 5, 6, 11 | syl13anc 1371 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
13 | mulgass3.t | . . . 4 ⊢ × = (.r‘𝑅) | |
14 | 7, 13, 1, 10 | opprmul 20354 | . . 3 ⊢ ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) |
15 | 7, 13, 1, 10 | opprmul 20354 | . . . 4 ⊢ (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 × 𝑌) |
16 | 15 | oveq2i 7442 | . . 3 ⊢ (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌)) |
17 | 12, 14, 16 | 3eqtr3g 2798 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
18 | mulgass3.m | . . . . 5 ⊢ · = (.g‘𝑅) | |
19 | 7 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘𝑅)) |
20 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘(oppr‘𝑅))) |
21 | ssv 4020 | . . . . . 6 ⊢ 𝐵 ⊆ V | |
22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ V) |
23 | ovexd 7466 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) ∈ V) | |
24 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
25 | 1, 24 | oppradd 20360 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
26 | 25 | oveqi 7444 | . . . . . 6 ⊢ (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦) |
27 | 26 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦)) |
28 | 18, 9, 19, 20, 22, 23, 27 | mulgpropd 19147 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → · = (.g‘(oppr‘𝑅))) |
29 | 28 | oveqd 7448 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr‘𝑅))𝑌)) |
30 | 29 | oveq2d 7447 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌))) |
31 | 28 | oveqd 7448 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
32 | 17, 30, 31 | 3eqtr4d 2785 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 ℤcz 12611 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 .gcmg 19098 Ringcrg 20251 opprcoppr 20350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-seq 14040 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-mulg 19099 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 |
This theorem is referenced by: zlmassa 21941 psdvsca 22186 psdmul 22188 elrgspnlem2 33233 |
Copyright terms: Public domain | W3C validator |