![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgass3 | Structured version Visualization version GIF version |
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
mulgass3.b | ⊢ 𝐵 = (Base‘𝑅) |
mulgass3.m | ⊢ · = (.g‘𝑅) |
mulgass3.t | ⊢ × = (.r‘𝑅) |
Ref | Expression |
---|---|
mulgass3 | ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | 1 | opprring 20291 | . . . . 5 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
3 | 2 | adantr 479 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (oppr‘𝑅) ∈ Ring) |
4 | simpr1 1191 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑁 ∈ ℤ) | |
5 | simpr3 1193 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
6 | simpr2 1192 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | mulgass3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 1, 7 | opprbas 20285 | . . . . 5 ⊢ 𝐵 = (Base‘(oppr‘𝑅)) |
9 | eqid 2727 | . . . . 5 ⊢ (.g‘(oppr‘𝑅)) = (.g‘(oppr‘𝑅)) | |
10 | eqid 2727 | . . . . 5 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
11 | 8, 9, 10 | mulgass2 20250 | . . . 4 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
12 | 3, 4, 5, 6, 11 | syl13anc 1369 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
13 | mulgass3.t | . . . 4 ⊢ × = (.r‘𝑅) | |
14 | 7, 13, 1, 10 | opprmul 20281 | . . 3 ⊢ ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) |
15 | 7, 13, 1, 10 | opprmul 20281 | . . . 4 ⊢ (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 × 𝑌) |
16 | 15 | oveq2i 7435 | . . 3 ⊢ (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌)) |
17 | 12, 14, 16 | 3eqtr3g 2790 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
18 | mulgass3.m | . . . . 5 ⊢ · = (.g‘𝑅) | |
19 | 7 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘𝑅)) |
20 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘(oppr‘𝑅))) |
21 | ssv 4004 | . . . . . 6 ⊢ 𝐵 ⊆ V | |
22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ V) |
23 | ovexd 7459 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) ∈ V) | |
24 | eqid 2727 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
25 | 1, 24 | oppradd 20287 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
26 | 25 | oveqi 7437 | . . . . . 6 ⊢ (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦) |
27 | 26 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦)) |
28 | 18, 9, 19, 20, 22, 23, 27 | mulgpropd 19076 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → · = (.g‘(oppr‘𝑅))) |
29 | 28 | oveqd 7441 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr‘𝑅))𝑌)) |
30 | 29 | oveq2d 7440 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌))) |
31 | 28 | oveqd 7441 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
32 | 17, 30, 31 | 3eqtr4d 2777 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3471 ⊆ wss 3947 ‘cfv 6551 (class class class)co 7424 ℤcz 12594 Basecbs 17185 +gcplusg 17238 .rcmulr 17239 .gcmg 19028 Ringcrg 20178 opprcoppr 20277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-tpos 8236 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-seq 14005 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-plusg 17251 df-mulr 17252 df-0g 17428 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18898 df-minusg 18899 df-mulg 19029 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20278 |
This theorem is referenced by: zlmassa 21841 psdvsca 22093 psdmul 22095 |
Copyright terms: Public domain | W3C validator |