| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgass3 | Structured version Visualization version GIF version | ||
| Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| mulgass3.b | ⊢ 𝐵 = (Base‘𝑅) |
| mulgass3.m | ⊢ · = (.g‘𝑅) |
| mulgass3.t | ⊢ × = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| mulgass3 | ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 2 | 1 | opprring 20307 | . . . . 5 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (oppr‘𝑅) ∈ Ring) |
| 4 | simpr1 1195 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑁 ∈ ℤ) | |
| 5 | simpr3 1197 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 6 | simpr2 1196 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | mulgass3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 1, 7 | opprbas 20303 | . . . . 5 ⊢ 𝐵 = (Base‘(oppr‘𝑅)) |
| 9 | eqid 2735 | . . . . 5 ⊢ (.g‘(oppr‘𝑅)) = (.g‘(oppr‘𝑅)) | |
| 10 | eqid 2735 | . . . . 5 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 11 | 8, 9, 10 | mulgass2 20269 | . . . 4 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
| 12 | 3, 4, 5, 6, 11 | syl13anc 1374 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
| 13 | mulgass3.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 14 | 7, 13, 1, 10 | opprmul 20300 | . . 3 ⊢ ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) |
| 15 | 7, 13, 1, 10 | opprmul 20300 | . . . 4 ⊢ (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 × 𝑌) |
| 16 | 15 | oveq2i 7416 | . . 3 ⊢ (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌)) |
| 17 | 12, 14, 16 | 3eqtr3g 2793 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
| 18 | mulgass3.m | . . . . 5 ⊢ · = (.g‘𝑅) | |
| 19 | 7 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘𝑅)) |
| 20 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘(oppr‘𝑅))) |
| 21 | ssv 3983 | . . . . . 6 ⊢ 𝐵 ⊆ V | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ V) |
| 23 | ovexd 7440 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) ∈ V) | |
| 24 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 25 | 1, 24 | oppradd 20304 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
| 26 | 25 | oveqi 7418 | . . . . . 6 ⊢ (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦) |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦)) |
| 28 | 18, 9, 19, 20, 22, 23, 27 | mulgpropd 19099 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → · = (.g‘(oppr‘𝑅))) |
| 29 | 28 | oveqd 7422 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr‘𝑅))𝑌)) |
| 30 | 29 | oveq2d 7421 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌))) |
| 31 | 28 | oveqd 7422 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
| 32 | 17, 30, 31 | 3eqtr4d 2780 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 ℤcz 12588 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 .gcmg 19050 Ringcrg 20193 opprcoppr 20296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-seq 14020 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-mulg 19051 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 |
| This theorem is referenced by: zlmassa 21863 psdvsca 22102 psdmul 22104 elrgspnlem2 33238 |
| Copyright terms: Public domain | W3C validator |