MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isridlrng Structured version   Visualization version   GIF version

Theorem isridlrng 21165
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
isridlrng.u 𝑈 = (LIdeal‘(oppr𝑅))
isridlrng.b 𝐵 = (Base‘𝑅)
isridlrng.t · = (.r𝑅)
Assertion
Ref Expression
isridlrng ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isridlrng
StepHypRef Expression
1 eqid 2733 . . . 4 (oppr𝑅) = (oppr𝑅)
21opprrng 20272 . . 3 (𝑅 ∈ Rng → (oppr𝑅) ∈ Rng)
31opprsubg 20279 . . . . . 6 (SubGrp‘𝑅) = (SubGrp‘(oppr𝑅))
43a1i 11 . . . . 5 (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘(oppr𝑅)))
54eleq2d 2819 . . . 4 (𝑅 ∈ Rng → (𝐼 ∈ (SubGrp‘𝑅) ↔ 𝐼 ∈ (SubGrp‘(oppr𝑅))))
65biimpa 476 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ (SubGrp‘(oppr𝑅)))
7 isridlrng.u . . . 4 𝑈 = (LIdeal‘(oppr𝑅))
8 isridlrng.b . . . . 5 𝐵 = (Base‘𝑅)
91, 8opprbas 20270 . . . 4 𝐵 = (Base‘(oppr𝑅))
10 eqid 2733 . . . 4 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
117, 9, 10dflidl2rng 21164 . . 3 (((oppr𝑅) ∈ Rng ∧ 𝐼 ∈ (SubGrp‘(oppr𝑅))) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼))
122, 6, 11syl2an2r 685 . 2 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼))
13 isridlrng.t . . . . . . 7 · = (.r𝑅)
148, 13, 1, 10opprmul 20267 . . . . . 6 (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥)
1514eleq1i 2824 . . . . 5 ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)
1615a1i 11 . . . 4 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼))
1716ralbidva 3154 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝑥𝐵) → (∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
1817ralbidva 3154 . 2 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥𝐵𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
1912, 18bitrd 279 1 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cfv 6489  (class class class)co 7355  Basecbs 17127  .rcmulr 17169  SubGrpcsubg 19041  Rngcrng 20078  opprcoppr 20263  LIdealclidl 21152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-subg 19044  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-oppr 20264  df-lss 20874  df-sra 21116  df-rgmod 21117  df-lidl 21154
This theorem is referenced by:  df2idl2rng  21202
  Copyright terms: Public domain W3C validator