MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem1 Structured version   Visualization version   GIF version

Theorem prmgaplem1 16961
Description: Lemma for prmgap 16971: The factorial of a number plus an integer greater than 1 and less than or equal to the number is divisible by that integer. (Contributed by AV, 13-Aug-2020.)
Assertion
Ref Expression
prmgaplem1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼))

Proof of Theorem prmgaplem1
StepHypRef Expression
1 elfzelz 13427 . . 3 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
21adantl 481 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℤ)
3 nnnn0 12391 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
43faccld 14191 . . . 4 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
54nnzd 12498 . . 3 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℤ)
65adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (!‘𝑁) ∈ ℤ)
7 elfzuz 13423 . . . . . 6 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
8 eluz2nn 12789 . . . . . 6 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
97, 8syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
10 elfzuz3 13424 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝑁 ∈ (ℤ𝐼))
119, 10jca 511 . . . 4 (𝐼 ∈ (2...𝑁) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐼)))
1211adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐼)))
13 dvdsfac 16237 . . 3 ((𝐼 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐼)) → 𝐼 ∥ (!‘𝑁))
1412, 13syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ (!‘𝑁))
15 iddvds 16180 . . . 4 (𝐼 ∈ ℤ → 𝐼𝐼)
161, 15syl 17 . . 3 (𝐼 ∈ (2...𝑁) → 𝐼𝐼)
1716adantl 481 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼𝐼)
182, 6, 2, 14, 17dvds2addd 16203 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349   + caddc 11012  cn 12128  2c2 12183  cz 12471  cuz 12735  ...cfz 13410  !cfa 14180  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-fac 14181  df-dvds 16164
This theorem is referenced by:  prmgaplem2  16962
  Copyright terms: Public domain W3C validator