Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > faccld | Structured version Visualization version GIF version |
Description: Closure of the factorial function, deduction version of faccl 13849. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
faccld.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
faccld | ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | faccld.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | faccl 13849 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ‘cfv 6380 ℕcn 11830 ℕ0cn0 12090 !cfa 13839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-fac 13840 |
This theorem is referenced by: facmapnn 13851 facwordi 13855 faclbnd 13856 faclbnd6 13865 facavg 13867 bcrpcl 13874 bccmpl 13875 bcn1 13879 bcm1k 13881 bcp1n 13882 bcval5 13884 permnn 13892 hashf1 14023 hashfac 14024 bcfallfac 15606 efcllem 15639 eftlub 15670 eirrlem 15765 dvdsfac 15887 lcmflefac 16205 pcbc 16453 infpnlem1 16463 infpnlem2 16464 prmgaplem1 16602 prmgaplem2 16603 2expltfac 16646 gexcl3 18976 aaliou3lem1 25235 aaliou3lem2 25236 aaliou3lem3 25237 aaliou3lem8 25238 aaliou3lem5 25240 aaliou3lem6 25241 taylfvallem1 25249 tayl0 25254 taylply2 25260 taylply 25261 dvtaylp 25262 taylthlem2 25266 advlogexp 25543 birthdaylem2 25835 wilthlem3 25952 wilthimp 25954 chtublem 26092 logfacubnd 26102 logfaclbnd 26103 logfacbnd3 26104 logexprlim 26106 bposlem3 26167 gausslemma2dlem0c 26239 gausslemma2dlem6 26253 gausslemma2dlem7 26254 prmdvdsbc 30850 2np3bcnp1 39822 mccllem 42813 dvnprodlem2 43163 etransclem14 43464 etransclem15 43465 etransclem20 43470 etransclem21 43471 etransclem22 43472 etransclem23 43473 etransclem24 43474 etransclem25 43475 etransclem28 43478 etransclem31 43481 etransclem32 43482 etransclem33 43483 etransclem34 43484 etransclem35 43485 etransclem37 43487 etransclem38 43488 etransclem41 43491 etransclem44 43494 etransclem45 43495 etransclem47 43497 etransclem48 43498 |
Copyright terms: Public domain | W3C validator |