Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > faccld | Structured version Visualization version GIF version |
Description: Closure of the factorial function, deduction version of faccl 13997. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
faccld.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
faccld | ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | faccld.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | faccl 13997 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6433 ℕcn 11973 ℕ0cn0 12233 !cfa 13987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-fac 13988 |
This theorem is referenced by: facmapnn 13999 facwordi 14003 faclbnd 14004 faclbnd6 14013 facavg 14015 bcrpcl 14022 bccmpl 14023 bcn1 14027 bcm1k 14029 bcp1n 14030 bcval5 14032 permnn 14040 hashf1 14171 hashfac 14172 bcfallfac 15754 efcllem 15787 eftlub 15818 eirrlem 15913 dvdsfac 16035 lcmflefac 16353 pcbc 16601 infpnlem1 16611 infpnlem2 16612 prmgaplem1 16750 prmgaplem2 16751 2expltfac 16794 gexcl3 19192 aaliou3lem1 25502 aaliou3lem2 25503 aaliou3lem3 25504 aaliou3lem8 25505 aaliou3lem5 25507 aaliou3lem6 25508 taylfvallem1 25516 tayl0 25521 taylply2 25527 taylply 25528 dvtaylp 25529 taylthlem2 25533 advlogexp 25810 birthdaylem2 26102 wilthlem3 26219 wilthimp 26221 chtublem 26359 logfacubnd 26369 logfaclbnd 26370 logfacbnd3 26371 logexprlim 26373 bposlem3 26434 gausslemma2dlem0c 26506 gausslemma2dlem6 26520 gausslemma2dlem7 26521 prmdvdsbc 31130 2np3bcnp1 40100 mccllem 43138 dvnprodlem2 43488 etransclem14 43789 etransclem15 43790 etransclem20 43795 etransclem21 43796 etransclem22 43797 etransclem23 43798 etransclem24 43799 etransclem25 43800 etransclem28 43803 etransclem31 43806 etransclem32 43807 etransclem33 43808 etransclem34 43809 etransclem35 43810 etransclem37 43812 etransclem38 43813 etransclem41 43816 etransclem44 43819 etransclem45 43820 etransclem47 43822 etransclem48 43823 |
Copyright terms: Public domain | W3C validator |