Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > faccld | Structured version Visualization version GIF version |
Description: Closure of the factorial function, deduction version of faccl 13925. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
faccld.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
faccld | ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | faccld.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | faccl 13925 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 ℕcn 11903 ℕ0cn0 12163 !cfa 13915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-fac 13916 |
This theorem is referenced by: facmapnn 13927 facwordi 13931 faclbnd 13932 faclbnd6 13941 facavg 13943 bcrpcl 13950 bccmpl 13951 bcn1 13955 bcm1k 13957 bcp1n 13958 bcval5 13960 permnn 13968 hashf1 14099 hashfac 14100 bcfallfac 15682 efcllem 15715 eftlub 15746 eirrlem 15841 dvdsfac 15963 lcmflefac 16281 pcbc 16529 infpnlem1 16539 infpnlem2 16540 prmgaplem1 16678 prmgaplem2 16679 2expltfac 16722 gexcl3 19107 aaliou3lem1 25407 aaliou3lem2 25408 aaliou3lem3 25409 aaliou3lem8 25410 aaliou3lem5 25412 aaliou3lem6 25413 taylfvallem1 25421 tayl0 25426 taylply2 25432 taylply 25433 dvtaylp 25434 taylthlem2 25438 advlogexp 25715 birthdaylem2 26007 wilthlem3 26124 wilthimp 26126 chtublem 26264 logfacubnd 26274 logfaclbnd 26275 logfacbnd3 26276 logexprlim 26278 bposlem3 26339 gausslemma2dlem0c 26411 gausslemma2dlem6 26425 gausslemma2dlem7 26426 prmdvdsbc 31032 2np3bcnp1 40028 mccllem 43028 dvnprodlem2 43378 etransclem14 43679 etransclem15 43680 etransclem20 43685 etransclem21 43686 etransclem22 43687 etransclem23 43688 etransclem24 43689 etransclem25 43690 etransclem28 43693 etransclem31 43696 etransclem32 43697 etransclem33 43698 etransclem34 43699 etransclem35 43700 etransclem37 43702 etransclem38 43703 etransclem41 43706 etransclem44 43709 etransclem45 43710 etransclem47 43712 etransclem48 43713 |
Copyright terms: Public domain | W3C validator |