![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > faccld | Structured version Visualization version GIF version |
Description: Closure of the factorial function, deduction version of faccl 14239. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
faccld.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
faccld | ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | faccld.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | faccl 14239 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6540 ℕcn 12208 ℕ0cn0 12468 !cfa 14229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-seq 13963 df-fac 14230 |
This theorem is referenced by: facmapnn 14241 facwordi 14245 faclbnd 14246 faclbnd6 14255 facavg 14257 bcrpcl 14264 bccmpl 14265 bcn1 14269 bcm1k 14271 bcp1n 14272 bcval5 14274 permnn 14282 hashf1 14414 hashfac 14415 bcfallfac 15984 efcllem 16017 eftlub 16048 eirrlem 16143 dvdsfac 16265 lcmflefac 16581 pcbc 16829 infpnlem1 16839 infpnlem2 16840 prmgaplem1 16978 prmgaplem2 16979 2expltfac 17022 gexcl3 19449 aaliou3lem1 25846 aaliou3lem2 25847 aaliou3lem3 25848 aaliou3lem8 25849 aaliou3lem5 25851 aaliou3lem6 25852 taylfvallem1 25860 tayl0 25865 taylply2 25871 taylply 25872 dvtaylp 25873 taylthlem2 25877 advlogexp 26154 birthdaylem2 26446 wilthlem3 26563 wilthimp 26565 chtublem 26703 logfacubnd 26713 logfaclbnd 26714 logfacbnd3 26715 logexprlim 26717 bposlem3 26778 gausslemma2dlem0c 26850 gausslemma2dlem6 26864 gausslemma2dlem7 26865 prmdvdsbc 32009 2np3bcnp1 40948 mccllem 44299 dvnprodlem2 44649 etransclem14 44950 etransclem15 44951 etransclem20 44956 etransclem21 44957 etransclem22 44958 etransclem23 44959 etransclem24 44960 etransclem25 44961 etransclem28 44964 etransclem31 44967 etransclem32 44968 etransclem33 44969 etransclem34 44970 etransclem35 44971 etransclem37 44973 etransclem38 44974 etransclem41 44977 etransclem44 44980 etransclem45 44981 etransclem47 44983 etransclem48 44984 |
Copyright terms: Public domain | W3C validator |