Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > faccld | Structured version Visualization version GIF version |
Description: Closure of the factorial function, deduction version of faccl 14098. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
faccld.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
faccld | ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | faccld.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | faccl 14098 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6479 ℕcn 12074 ℕ0cn0 12334 !cfa 14088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-seq 13823 df-fac 14089 |
This theorem is referenced by: facmapnn 14100 facwordi 14104 faclbnd 14105 faclbnd6 14114 facavg 14116 bcrpcl 14123 bccmpl 14124 bcn1 14128 bcm1k 14130 bcp1n 14131 bcval5 14133 permnn 14141 hashf1 14271 hashfac 14272 bcfallfac 15853 efcllem 15886 eftlub 15917 eirrlem 16012 dvdsfac 16134 lcmflefac 16450 pcbc 16698 infpnlem1 16708 infpnlem2 16709 prmgaplem1 16847 prmgaplem2 16848 2expltfac 16891 gexcl3 19288 aaliou3lem1 25608 aaliou3lem2 25609 aaliou3lem3 25610 aaliou3lem8 25611 aaliou3lem5 25613 aaliou3lem6 25614 taylfvallem1 25622 tayl0 25627 taylply2 25633 taylply 25634 dvtaylp 25635 taylthlem2 25639 advlogexp 25916 birthdaylem2 26208 wilthlem3 26325 wilthimp 26327 chtublem 26465 logfacubnd 26475 logfaclbnd 26476 logfacbnd3 26477 logexprlim 26479 bposlem3 26540 gausslemma2dlem0c 26612 gausslemma2dlem6 26626 gausslemma2dlem7 26627 prmdvdsbc 31417 2np3bcnp1 40357 mccllem 43474 dvnprodlem2 43824 etransclem14 44125 etransclem15 44126 etransclem20 44131 etransclem21 44132 etransclem22 44133 etransclem23 44134 etransclem24 44135 etransclem25 44136 etransclem28 44139 etransclem31 44142 etransclem32 44143 etransclem33 44144 etransclem34 44145 etransclem35 44146 etransclem37 44148 etransclem38 44149 etransclem41 44152 etransclem44 44155 etransclem45 44156 etransclem47 44158 etransclem48 44159 |
Copyright terms: Public domain | W3C validator |