MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgap Structured version   Visualization version   GIF version

Theorem prmgap 16997
Description: The prime gap theorem: for each positive integer there are (at least) two successive primes with a difference ("gap") at least as big as the given integer. (Contributed by AV, 13-Aug-2020.)
Assertion
Ref Expression
prmgap 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Distinct variable group:   𝑛,𝑝,𝑞,𝑧

Proof of Theorem prmgap
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
2 facmapnn 14246 . . . 4 (𝑥 ∈ ℕ ↦ (!‘𝑥)) ∈ (ℕ ↑m ℕ)
32a1i 11 . . 3 (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (!‘𝑥)) ∈ (ℕ ↑m ℕ))
4 prmgaplem2 16988 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((!‘𝑛) + 𝑖) gcd 𝑖))
5 eqidd 2725 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑥 ∈ ℕ ↦ (!‘𝑥)) = (𝑥 ∈ ℕ ↦ (!‘𝑥)))
6 fveq2 6882 . . . . . . . . 9 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
76adantl 481 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑥 = 𝑛) → (!‘𝑥) = (!‘𝑛))
8 simpl 482 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ)
9 fvexd 6897 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (!‘𝑛) ∈ V)
105, 7, 8, 9fvmptd 6996 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑥 ∈ ℕ ↦ (!‘𝑥))‘𝑛) = (!‘𝑛))
1110oveq1d 7417 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑥 ∈ ℕ ↦ (!‘𝑥))‘𝑛) + 𝑖) = ((!‘𝑛) + 𝑖))
1211oveq1d 7417 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑥 ∈ ℕ ↦ (!‘𝑥))‘𝑛) + 𝑖) gcd 𝑖) = (((!‘𝑛) + 𝑖) gcd 𝑖))
134, 12breqtrrd 5167 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑥 ∈ ℕ ↦ (!‘𝑥))‘𝑛) + 𝑖) gcd 𝑖))
1413ralrimiva 3138 . . 3 (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑥 ∈ ℕ ↦ (!‘𝑥))‘𝑛) + 𝑖) gcd 𝑖))
151, 3, 14prmgaplem8 16996 . 2 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
1615rgen 3055 1 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  wnel 3038  wral 3053  wrex 3062  Vcvv 3466   class class class wbr 5139  cmpt 5222  cfv 6534  (class class class)co 7402  m cmap 8817  1c1 11108   + caddc 11110   < clt 11247  cle 11248  cmin 11443  cn 12211  2c2 12266  ...cfz 13485  ..^cfzo 13628  !cfa 14234   gcd cgcd 16438  cprime 16611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12976  df-fz 13486  df-fzo 13629  df-seq 13968  df-exp 14029  df-fac 14235  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16201  df-gcd 16439  df-prm 16612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator