![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ring1eq0 | Structured version Visualization version GIF version |
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
ring1eq0.b | ⊢ 𝐵 = (Base‘𝑅) |
ring1eq0.u | ⊢ 1 = (1r‘𝑅) |
ring1eq0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ring1eq0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 1 = 0 ) | |
2 | 1 | oveq1d 7420 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑋)) |
3 | 1 | oveq1d 7420 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = ( 0 (.r‘𝑅)𝑌)) |
4 | simpl1 1188 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑅 ∈ Ring) | |
5 | simpl2 1189 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑋 ∈ 𝐵) | |
6 | ring1eq0.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
7 | eqid 2726 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | ring1eq0.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
9 | 6, 7, 8 | ringlz 20192 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑋) = 0 ) |
10 | 4, 5, 9 | syl2anc 583 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑋) = 0 ) |
11 | simpl3 1190 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑌 ∈ 𝐵) | |
12 | 6, 7, 8 | ringlz 20192 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑌) = 0 ) |
13 | 4, 11, 12 | syl2anc 583 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑌) = 0 ) |
14 | 10, 13 | eqtr4d 2769 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑌)) |
15 | 3, 14 | eqtr4d 2769 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = ( 0 (.r‘𝑅)𝑋)) |
16 | 2, 15 | eqtr4d 2769 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = ( 1 (.r‘𝑅)𝑌)) |
17 | ring1eq0.u | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
18 | 6, 7, 17 | ringlidm 20168 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑋) = 𝑋) |
19 | 4, 5, 18 | syl2anc 583 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = 𝑋) |
20 | 6, 7, 17 | ringlidm 20168 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
21 | 4, 11, 20 | syl2anc 583 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
22 | 16, 19, 21 | 3eqtr3d 2774 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑋 = 𝑌) |
23 | 22 | ex 412 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 .rcmulr 17207 0gc0g 17394 1rcur 20086 Ringcrg 20138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 |
This theorem is referenced by: ring1ne0 20198 isnzr2 20420 ringelnzr 20423 01eq0ring 20430 abvneg 20677 nrginvrcn 24564 |
Copyright terms: Public domain | W3C validator |