MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ring1eq0 Structured version   Visualization version   GIF version

Theorem ring1eq0 18944
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ring1eq0.b 𝐵 = (Base‘𝑅)
ring1eq0.u 1 = (1r𝑅)
ring1eq0.z 0 = (0g𝑅)
Assertion
Ref Expression
ring1eq0 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))

Proof of Theorem ring1eq0
StepHypRef Expression
1 simpr 479 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 1 = 0 )
21oveq1d 6920 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = ( 0 (.r𝑅)𝑋))
31oveq1d 6920 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = ( 0 (.r𝑅)𝑌))
4 simpl1 1248 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑅 ∈ Ring)
5 simpl2 1250 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑋𝐵)
6 ring1eq0.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 eqid 2825 . . . . . . . 8 (.r𝑅) = (.r𝑅)
8 ring1eq0.z . . . . . . . 8 0 = (0g𝑅)
96, 7, 8ringlz 18941 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (.r𝑅)𝑋) = 0 )
104, 5, 9syl2anc 581 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑋) = 0 )
11 simpl3 1252 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑌𝐵)
126, 7, 8ringlz 18941 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 (.r𝑅)𝑌) = 0 )
134, 11, 12syl2anc 581 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑌) = 0 )
1410, 13eqtr4d 2864 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑋) = ( 0 (.r𝑅)𝑌))
153, 14eqtr4d 2864 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = ( 0 (.r𝑅)𝑋))
162, 15eqtr4d 2864 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = ( 1 (.r𝑅)𝑌))
17 ring1eq0.u . . . . 5 1 = (1r𝑅)
186, 7, 17ringlidm 18925 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 (.r𝑅)𝑋) = 𝑋)
194, 5, 18syl2anc 581 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = 𝑋)
206, 7, 17ringlidm 18925 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 1 (.r𝑅)𝑌) = 𝑌)
214, 11, 20syl2anc 581 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = 𝑌)
2216, 19, 213eqtr3d 2869 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑋 = 𝑌)
2322ex 403 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  cfv 6123  (class class class)co 6905  Basecbs 16222  .rcmulr 16306  0gc0g 16453  1rcur 18855  Ringcrg 18901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-mgp 18844  df-ur 18856  df-ring 18903
This theorem is referenced by:  ring1ne0  18945  abvneg  19190  isnzr2  19624  ringelnzr  19627  nrginvrcn  22866
  Copyright terms: Public domain W3C validator