![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmndvdsru | Structured version Visualization version GIF version |
Description: A ring prime element does not divide any ring unit. (Contributed by Thierry Arnoux, 27-May-2025.) |
Ref | Expression |
---|---|
rprmndvdsru.u | ⊢ 𝑈 = (Unit‘𝑅) |
rprmndvdsru.p | ⊢ 𝑃 = (RPrime‘𝑅) |
rprmndvdsru.d | ⊢ ∥ = (∥r‘𝑅) |
rprmndvdsru.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
rprmndvdsru.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
rprmndvdsru.t | ⊢ (𝜑 → 𝑇 ∈ 𝑈) |
Ref | Expression |
---|---|
rprmndvdsru | ⊢ (𝜑 → ¬ 𝑄 ∥ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | rprmndvdsru.d | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
3 | rprmndvdsru.p | . . 3 ⊢ 𝑃 = (RPrime‘𝑅) | |
4 | rprmndvdsru.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | rprmndvdsru.q | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
6 | 1, 2, 3, 4, 5 | rprmndvdsr1 33336 | . 2 ⊢ (𝜑 → ¬ 𝑄 ∥ (1r‘𝑅)) |
7 | 4 | crngringd 20198 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | rprmndvdsru.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑈) | |
9 | rprmndvdsru.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
10 | 9, 1, 2 | crngunit 20329 | . . . . 5 ⊢ (𝑅 ∈ CRing → (𝑇 ∈ 𝑈 ↔ 𝑇 ∥ (1r‘𝑅))) |
11 | 10 | biimpa 475 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑇 ∈ 𝑈) → 𝑇 ∥ (1r‘𝑅)) |
12 | 4, 8, 11 | syl2anc 582 | . . 3 ⊢ (𝜑 → 𝑇 ∥ (1r‘𝑅)) |
13 | eqid 2725 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 13, 2 | dvdsrtr 20319 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∥ 𝑇 ∧ 𝑇 ∥ (1r‘𝑅)) → 𝑄 ∥ (1r‘𝑅)) |
15 | 14 | 3expa 1115 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑄 ∥ 𝑇) ∧ 𝑇 ∥ (1r‘𝑅)) → 𝑄 ∥ (1r‘𝑅)) |
16 | 15 | an32s 650 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑇 ∥ (1r‘𝑅)) ∧ 𝑄 ∥ 𝑇) → 𝑄 ∥ (1r‘𝑅)) |
17 | 16 | ex 411 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑇 ∥ (1r‘𝑅)) → (𝑄 ∥ 𝑇 → 𝑄 ∥ (1r‘𝑅))) |
18 | 7, 12, 17 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝑄 ∥ 𝑇 → 𝑄 ∥ (1r‘𝑅))) |
19 | 6, 18 | mtod 197 | 1 ⊢ (𝜑 → ¬ 𝑄 ∥ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 Basecbs 17183 1rcur 20133 Ringcrg 20185 CRingccrg 20186 ∥rcdsr 20305 Unitcui 20306 RPrimecrpm 20383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-cmn 19749 df-mgp 20087 df-ring 20187 df-cring 20188 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-rprm 20384 |
This theorem is referenced by: 1arithidom 33349 |
Copyright terms: Public domain | W3C validator |