| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrgnz | Structured version Visualization version GIF version | ||
| Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.) |
| Ref | Expression |
|---|---|
| rrgnz.t | ⊢ 𝐸 = (RLReg‘𝑅) |
| rrgnz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rrgnz | ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 2 | rrgnz.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | nzrnz 20425 | . . 3 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 4 | 3 | neneqd 2933 | . 2 ⊢ (𝑅 ∈ NzRing → ¬ (1r‘𝑅) = 0 ) |
| 5 | nzrring 20426 | . . . 4 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → 𝑅 ∈ Ring) |
| 7 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → 0 ∈ 𝐸) | |
| 8 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8, 1 | ringidcl 20178 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 11 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 8, 11, 2, 6, 10 | ringlzd 20208 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → ( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ) |
| 13 | rrgnz.t | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 14 | 13, 8, 11, 2 | rrgeq0 20610 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝐸 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → (( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ↔ (1r‘𝑅) = 0 )) |
| 15 | 14 | biimpa 476 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 0 ∈ 𝐸 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ ( 0 (.r‘𝑅)(1r‘𝑅)) = 0 ) → (1r‘𝑅) = 0 ) |
| 16 | 6, 7, 10, 12, 15 | syl31anc 1375 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 0 ∈ 𝐸) → (1r‘𝑅) = 0 ) |
| 17 | 4, 16 | mtand 815 | 1 ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 .rcmulr 17157 0gc0g 17338 1rcur 20094 Ringcrg 20146 NzRingcnzr 20422 RLRegcrlreg 20601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-nzr 20423 df-rlreg 20604 |
| This theorem is referenced by: isdomn6 20624 fracfld 33266 |
| Copyright terms: Public domain | W3C validator |