MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgnz Structured version   Visualization version   GIF version

Theorem rrgnz 20589
Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
Hypotheses
Ref Expression
rrgnz.t 𝐸 = (RLReg‘𝑅)
rrgnz.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgnz (𝑅 ∈ NzRing → ¬ 0𝐸)

Proof of Theorem rrgnz
StepHypRef Expression
1 eqid 2729 . . . 4 (1r𝑅) = (1r𝑅)
2 rrgnz.z . . . 4 0 = (0g𝑅)
31, 2nzrnz 20400 . . 3 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
43neneqd 2930 . 2 (𝑅 ∈ NzRing → ¬ (1r𝑅) = 0 )
5 nzrring 20401 . . . 4 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
65adantr 480 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → 𝑅 ∈ Ring)
7 simpr 484 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → 0𝐸)
8 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
98, 1ringidcl 20150 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
106, 9syl 17 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → (1r𝑅) ∈ (Base‘𝑅))
11 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
128, 11, 2, 6, 10ringlzd 20180 . . 3 ((𝑅 ∈ NzRing ∧ 0𝐸) → ( 0 (.r𝑅)(1r𝑅)) = 0 )
13 rrgnz.t . . . . 5 𝐸 = (RLReg‘𝑅)
1413, 8, 11, 2rrgeq0 20585 . . . 4 ((𝑅 ∈ Ring ∧ 0𝐸 ∧ (1r𝑅) ∈ (Base‘𝑅)) → (( 0 (.r𝑅)(1r𝑅)) = 0 ↔ (1r𝑅) = 0 ))
1514biimpa 476 . . 3 (((𝑅 ∈ Ring ∧ 0𝐸 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ ( 0 (.r𝑅)(1r𝑅)) = 0 ) → (1r𝑅) = 0 )
166, 7, 10, 12, 15syl31anc 1375 . 2 ((𝑅 ∈ NzRing ∧ 0𝐸) → (1r𝑅) = 0 )
174, 16mtand 815 1 (𝑅 ∈ NzRing → ¬ 0𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  .rcmulr 17162  0gc0g 17343  1rcur 20066  Ringcrg 20118  NzRingcnzr 20397  RLRegcrlreg 20576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-nzr 20398  df-rlreg 20579
This theorem is referenced by:  isdomn6  20599  fracfld  33247
  Copyright terms: Public domain W3C validator