MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatopth Structured version   Visualization version   GIF version

Theorem ccatopth 14764
Description: An opth 5496-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
Assertion
Ref Expression
ccatopth (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem ccatopth
StepHypRef Expression
1 oveq1 7455 . . . . 5 ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → ((𝐴 ++ 𝐵) prefix (♯‘𝐴)) = ((𝐶 ++ 𝐷) prefix (♯‘𝐴)))
2 pfxccat1 14750 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) prefix (♯‘𝐴)) = 𝐴)
3 oveq2 7456 . . . . . . 7 ((♯‘𝐴) = (♯‘𝐶) → ((𝐶 ++ 𝐷) prefix (♯‘𝐴)) = ((𝐶 ++ 𝐷) prefix (♯‘𝐶)))
4 pfxccat1 14750 . . . . . . 7 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → ((𝐶 ++ 𝐷) prefix (♯‘𝐶)) = 𝐶)
53, 4sylan9eqr 2802 . . . . . 6 (((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐶 ++ 𝐷) prefix (♯‘𝐴)) = 𝐶)
62, 5eqeqan12d 2754 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶))) → (((𝐴 ++ 𝐵) prefix (♯‘𝐴)) = ((𝐶 ++ 𝐷) prefix (♯‘𝐴)) ↔ 𝐴 = 𝐶))
71, 6imbitrid 244 . . . 4 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶))) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐴 = 𝐶))
873impb 1115 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐴 = 𝐶))
9 simpr 484 . . . . . 6 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
10 simpl3 1193 . . . . . . 7 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (♯‘𝐴) = (♯‘𝐶))
119fveq2d 6924 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐶 ++ 𝐷)))
12 simpl1 1191 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋))
13 ccatlen 14623 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1412, 13syl 17 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
15 simpl2 1192 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋))
16 ccatlen 14623 . . . . . . . . 9 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → (♯‘(𝐶 ++ 𝐷)) = ((♯‘𝐶) + (♯‘𝐷)))
1715, 16syl 17 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (♯‘(𝐶 ++ 𝐷)) = ((♯‘𝐶) + (♯‘𝐷)))
1811, 14, 173eqtr3d 2788 . . . . . . 7 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐶) + (♯‘𝐷)))
1910, 18opeq12d 4905 . . . . . 6 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ⟨(♯‘𝐴), ((♯‘𝐴) + (♯‘𝐵))⟩ = ⟨(♯‘𝐶), ((♯‘𝐶) + (♯‘𝐷))⟩)
209, 19oveq12d 7466 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐴 ++ 𝐵) substr ⟨(♯‘𝐴), ((♯‘𝐴) + (♯‘𝐵))⟩) = ((𝐶 ++ 𝐷) substr ⟨(♯‘𝐶), ((♯‘𝐶) + (♯‘𝐷))⟩))
21 swrdccat2 14717 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) substr ⟨(♯‘𝐴), ((♯‘𝐴) + (♯‘𝐵))⟩) = 𝐵)
2212, 21syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐴 ++ 𝐵) substr ⟨(♯‘𝐴), ((♯‘𝐴) + (♯‘𝐵))⟩) = 𝐵)
23 swrdccat2 14717 . . . . . 6 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → ((𝐶 ++ 𝐷) substr ⟨(♯‘𝐶), ((♯‘𝐶) + (♯‘𝐷))⟩) = 𝐷)
2415, 23syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐶 ++ 𝐷) substr ⟨(♯‘𝐶), ((♯‘𝐶) + (♯‘𝐷))⟩) = 𝐷)
2520, 22, 243eqtr3d 2788 . . . 4 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → 𝐵 = 𝐷)
2625ex 412 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐵 = 𝐷))
278, 26jcad 512 . 2 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
28 oveq12 7457 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
2927, 28impbid1 225 1 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cop 4654  cfv 6573  (class class class)co 7448   + caddc 11187  chash 14379  Word cword 14562   ++ cconcat 14618   substr csubstr 14688   prefix cpfx 14718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719
This theorem is referenced by:  ccatopth2  14765  ccatlcan  14766  splval2  14805  s2eq2s1eq  14985  s3eqs2s1eq  14987  efgredleme  19785  efgredlemc  19787
  Copyright terms: Public domain W3C validator