MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatopth Structured version   Visualization version   GIF version

Theorem ccatopth 14662
Description: An opth 5475-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
Assertion
Ref Expression
ccatopth (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem ccatopth
StepHypRef Expression
1 oveq1 7412 . . . . 5 ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → ((𝐴 ++ 𝐵) prefix (♯‘𝐴)) = ((𝐶 ++ 𝐷) prefix (♯‘𝐴)))
2 pfxccat1 14648 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) prefix (♯‘𝐴)) = 𝐴)
3 oveq2 7413 . . . . . . 7 ((♯‘𝐴) = (♯‘𝐶) → ((𝐶 ++ 𝐷) prefix (♯‘𝐴)) = ((𝐶 ++ 𝐷) prefix (♯‘𝐶)))
4 pfxccat1 14648 . . . . . . 7 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → ((𝐶 ++ 𝐷) prefix (♯‘𝐶)) = 𝐶)
53, 4sylan9eqr 2794 . . . . . 6 (((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐶 ++ 𝐷) prefix (♯‘𝐴)) = 𝐶)
62, 5eqeqan12d 2746 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶))) → (((𝐴 ++ 𝐵) prefix (♯‘𝐴)) = ((𝐶 ++ 𝐷) prefix (♯‘𝐴)) ↔ 𝐴 = 𝐶))
71, 6imbitrid 243 . . . 4 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶))) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐴 = 𝐶))
873impb 1115 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐴 = 𝐶))
9 simpr 485 . . . . . 6 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
10 simpl3 1193 . . . . . . 7 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (♯‘𝐴) = (♯‘𝐶))
119fveq2d 6892 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐶 ++ 𝐷)))
12 simpl1 1191 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋))
13 ccatlen 14521 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1412, 13syl 17 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
15 simpl2 1192 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋))
16 ccatlen 14521 . . . . . . . . 9 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → (♯‘(𝐶 ++ 𝐷)) = ((♯‘𝐶) + (♯‘𝐷)))
1715, 16syl 17 . . . . . . . 8 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → (♯‘(𝐶 ++ 𝐷)) = ((♯‘𝐶) + (♯‘𝐷)))
1811, 14, 173eqtr3d 2780 . . . . . . 7 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐶) + (♯‘𝐷)))
1910, 18opeq12d 4880 . . . . . 6 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ⟨(♯‘𝐴), ((♯‘𝐴) + (♯‘𝐵))⟩ = ⟨(♯‘𝐶), ((♯‘𝐶) + (♯‘𝐷))⟩)
209, 19oveq12d 7423 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐴 ++ 𝐵) substr ⟨(♯‘𝐴), ((♯‘𝐴) + (♯‘𝐵))⟩) = ((𝐶 ++ 𝐷) substr ⟨(♯‘𝐶), ((♯‘𝐶) + (♯‘𝐷))⟩))
21 swrdccat2 14615 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) substr ⟨(♯‘𝐴), ((♯‘𝐴) + (♯‘𝐵))⟩) = 𝐵)
2212, 21syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐴 ++ 𝐵) substr ⟨(♯‘𝐴), ((♯‘𝐴) + (♯‘𝐵))⟩) = 𝐵)
23 swrdccat2 14615 . . . . . 6 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → ((𝐶 ++ 𝐷) substr ⟨(♯‘𝐶), ((♯‘𝐶) + (♯‘𝐷))⟩) = 𝐷)
2415, 23syl 17 . . . . 5 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → ((𝐶 ++ 𝐷) substr ⟨(♯‘𝐶), ((♯‘𝐶) + (♯‘𝐷))⟩) = 𝐷)
2520, 22, 243eqtr3d 2780 . . . 4 ((((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) ∧ (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) → 𝐵 = 𝐷)
2625ex 413 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → 𝐵 = 𝐷))
278, 26jcad 513 . 2 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
28 oveq12 7414 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
2927, 28impbid1 224 1 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4633  cfv 6540  (class class class)co 7405   + caddc 11109  chash 14286  Word cword 14460   ++ cconcat 14516   substr csubstr 14586   prefix cpfx 14616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-substr 14587  df-pfx 14617
This theorem is referenced by:  ccatopth2  14663  ccatlcan  14664  splval2  14703  s2eq2s1eq  14883  s3eqs2s1eq  14885  efgredleme  19605  efgredlemc  19607
  Copyright terms: Public domain W3C validator