MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcaopr3 Structured version   Visualization version   GIF version

Theorem seqcaopr3 13686
Description: Lemma for seqcaopr2 13687. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqcaopr3.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr3.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
seqcaopr3.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqcaopr3.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcaopr3.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
seqcaopr3.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
seqcaopr3.7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
Assertion
Ref Expression
seqcaopr3 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝑛,𝑥,𝑦,𝐹   𝑘,𝐻,𝑛   𝑘,𝑁,𝑛,𝑥,𝑦   𝜑,𝑘,𝑛,𝑥,𝑦   𝑘,𝐺,𝑛,𝑥,𝑦   𝑘,𝑀,𝑛,𝑥,𝑦   𝑄,𝑘,𝑛,𝑥,𝑦   + ,𝑛,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦
Allowed substitution hints:   + (𝑘)   𝑆(𝑛)   𝐻(𝑥,𝑦)

Proof of Theorem seqcaopr3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 seqcaopr3.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13193 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6756 . . . . 5 (𝑧 = 𝑀 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑀))
5 fveq2 6756 . . . . . 6 (𝑧 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑀))
6 fveq2 6756 . . . . . 6 (𝑧 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑀))
75, 6oveq12d 7273 . . . . 5 (𝑧 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))
84, 7eqeq12d 2754 . . . 4 (𝑧 = 𝑀 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))))
98imbi2d 340 . . 3 (𝑧 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))))
10 fveq2 6756 . . . . 5 (𝑧 = 𝑛 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑛))
11 fveq2 6756 . . . . . 6 (𝑧 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑛))
12 fveq2 6756 . . . . . 6 (𝑧 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑛))
1311, 12oveq12d 7273 . . . . 5 (𝑧 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))
1410, 13eqeq12d 2754 . . . 4 (𝑧 = 𝑛 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))))
1514imbi2d 340 . . 3 (𝑧 = 𝑛 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))))
16 fveq2 6756 . . . . 5 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘(𝑛 + 1)))
17 fveq2 6756 . . . . . 6 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
18 fveq2 6756 . . . . . 6 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘(𝑛 + 1)))
1917, 18oveq12d 7273 . . . . 5 (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))
2016, 19eqeq12d 2754 . . . 4 (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))
2120imbi2d 340 . . 3 (𝑧 = (𝑛 + 1) → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))))
22 fveq2 6756 . . . . 5 (𝑧 = 𝑁 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑁))
23 fveq2 6756 . . . . . 6 (𝑧 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑁))
24 fveq2 6756 . . . . . 6 (𝑧 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑁))
2523, 24oveq12d 7273 . . . . 5 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
2622, 25eqeq12d 2754 . . . 4 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))))
2726imbi2d 340 . . 3 (𝑧 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))))
28 fveq2 6756 . . . . . . 7 (𝑘 = 𝑀 → (𝐻𝑘) = (𝐻𝑀))
29 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
30 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
3129, 30oveq12d 7273 . . . . . . 7 (𝑘 = 𝑀 → ((𝐹𝑘)𝑄(𝐺𝑘)) = ((𝐹𝑀)𝑄(𝐺𝑀)))
3228, 31eqeq12d 2754 . . . . . 6 (𝑘 = 𝑀 → ((𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)) ↔ (𝐻𝑀) = ((𝐹𝑀)𝑄(𝐺𝑀))))
33 seqcaopr3.6 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
3433ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
35 eluzfz1 13192 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
361, 35syl 17 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
3732, 34, 36rspcdva 3554 . . . . 5 (𝜑 → (𝐻𝑀) = ((𝐹𝑀)𝑄(𝐺𝑀)))
38 eluzel2 12516 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
391, 38syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
40 seq1 13662 . . . . . 6 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐻)‘𝑀) = (𝐻𝑀))
4139, 40syl 17 . . . . 5 (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = (𝐻𝑀))
42 seq1 13662 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
43 seq1 13662 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺𝑀))
4442, 43oveq12d 7273 . . . . . 6 (𝑀 ∈ ℤ → ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)) = ((𝐹𝑀)𝑄(𝐺𝑀)))
4539, 44syl 17 . . . . 5 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)) = ((𝐹𝑀)𝑄(𝐺𝑀)))
4637, 41, 453eqtr4d 2788 . . . 4 (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))
4746a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))))
48 oveq1 7262 . . . . . 6 ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))))
49 elfzouz 13320 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
5049adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
51 seqp1 13664 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))))
5250, 51syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))))
53 seqcaopr3.7 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
54 fveq2 6756 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐻𝑘) = (𝐻‘(𝑛 + 1)))
55 fveq2 6756 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
56 fveq2 6756 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
5755, 56oveq12d 7273 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝐹𝑘)𝑄(𝐺𝑘)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
5854, 57eqeq12d 2754 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)) ↔ (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
5934adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)(𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
60 fzofzp1 13412 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
6160adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁))
6258, 59, 61rspcdva 3554 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
6362oveq2d 7271 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
64 seqp1 13664 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
65 seqp1 13664 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
6664, 65oveq12d 7273 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
6750, 66syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
6853, 63, 673eqtr4rd 2789 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))))
6952, 68eqeq12d 2754 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) ↔ ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1)))))
7048, 69syl5ibr 245 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))
7170expcom 413 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))))
7271a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) → (𝜑 → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))))
739, 15, 21, 27, 47, 72fzind2 13433 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))))
743, 73mpcom 38 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  seqcseq 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650
This theorem is referenced by:  seqcaopr2  13687  gsumzaddlem  19437
  Copyright terms: Public domain W3C validator