Step | Hyp | Ref
| Expression |
1 | | seqcaopr3.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 13264 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | fveq2 6774 |
. . . . 5
⊢ (𝑧 = 𝑀 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑀)) |
5 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑀)) |
6 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑀)) |
7 | 5, 6 | oveq12d 7293 |
. . . . 5
⊢ (𝑧 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))) |
8 | 4, 7 | eqeq12d 2754 |
. . . 4
⊢ (𝑧 = 𝑀 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))) |
9 | 8 | imbi2d 341 |
. . 3
⊢ (𝑧 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))))) |
10 | | fveq2 6774 |
. . . . 5
⊢ (𝑧 = 𝑛 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑛)) |
11 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑛)) |
12 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑛)) |
13 | 11, 12 | oveq12d 7293 |
. . . . 5
⊢ (𝑧 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) |
14 | 10, 13 | eqeq12d 2754 |
. . . 4
⊢ (𝑧 = 𝑛 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))) |
15 | 14 | imbi2d 341 |
. . 3
⊢ (𝑧 = 𝑛 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))))) |
16 | | fveq2 6774 |
. . . . 5
⊢ (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘(𝑛 + 1))) |
17 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))) |
18 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘(𝑛 + 1))) |
19 | 17, 18 | oveq12d 7293 |
. . . . 5
⊢ (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))) |
20 | 16, 19 | eqeq12d 2754 |
. . . 4
⊢ (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))) |
21 | 20 | imbi2d 341 |
. . 3
⊢ (𝑧 = (𝑛 + 1) → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))) |
22 | | fveq2 6774 |
. . . . 5
⊢ (𝑧 = 𝑁 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑁)) |
23 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑁)) |
24 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑁)) |
25 | 23, 24 | oveq12d 7293 |
. . . . 5
⊢ (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) |
26 | 22, 25 | eqeq12d 2754 |
. . . 4
⊢ (𝑧 = 𝑁 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))) |
27 | 26 | imbi2d 341 |
. . 3
⊢ (𝑧 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))))) |
28 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → (𝐻‘𝑘) = (𝐻‘𝑀)) |
29 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
30 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐺‘𝑘) = (𝐺‘𝑀)) |
31 | 29, 30 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀))) |
32 | 28, 31 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑘 = 𝑀 → ((𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) ↔ (𝐻‘𝑀) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀)))) |
33 | | seqcaopr3.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
34 | 33 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
35 | | eluzfz1 13263 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
36 | 1, 35 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
37 | 32, 34, 36 | rspcdva 3562 |
. . . . 5
⊢ (𝜑 → (𝐻‘𝑀) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀))) |
38 | | eluzel2 12587 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
39 | 1, 38 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
40 | | seq1 13734 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐻)‘𝑀) = (𝐻‘𝑀)) |
41 | 39, 40 | syl 17 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = (𝐻‘𝑀)) |
42 | | seq1 13734 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
43 | | seq1 13734 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺‘𝑀)) |
44 | 42, 43 | oveq12d 7293 |
. . . . . 6
⊢ (𝑀 ∈ ℤ →
((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀))) |
45 | 39, 44 | syl 17 |
. . . . 5
⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)) = ((𝐹‘𝑀)𝑄(𝐺‘𝑀))) |
46 | 37, 41, 45 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))) |
47 | 46 | a1i 11 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))) |
48 | | oveq1 7282 |
. . . . . 6
⊢
((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1)))) |
49 | | elfzouz 13391 |
. . . . . . . . 9
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
50 | 49 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
51 | | seqp1 13736 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1)))) |
52 | 50, 51 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1)))) |
53 | | seqcaopr3.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
54 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → (𝐻‘𝑘) = (𝐻‘(𝑛 + 1))) |
55 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
56 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
57 | 55, 56 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) |
58 | 54, 57 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → ((𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘)) ↔ (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))) |
59 | 34 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)(𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
60 | | fzofzp1 13484 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
61 | 60 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
62 | 58, 59, 61 | rspcdva 3562 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) |
63 | 62 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))) |
64 | | seqp1 13736 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
65 | | seqp1 13736 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
66 | 64, 65 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
67 | 50, 66 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
68 | 53, 63, 67 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1)))) |
69 | 52, 68 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) ↔ ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))))) |
70 | 48, 69 | syl5ibr 245 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))) |
71 | 70 | expcom 414 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))) |
72 | 71 | a2d 29 |
. . 3
⊢ (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) → (𝜑 → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))) |
73 | 9, 15, 21, 27, 47, 72 | fzind2 13505 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))) |
74 | 3, 73 | mpcom 38 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) |