MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem2 Structured version   Visualization version   GIF version

Theorem sqrlem2 14425
Description: Lemma for 01sqrex 14431. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
sqrlem2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem sqrlem2
StepHypRef Expression
1 simpl 483 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ+)
2 rpre 12236 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
3 rpgt0 12240 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 𝐴)
4 1re 10476 . . . . . 6 1 ∈ ℝ
5 lemul1 11329 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
64, 5mp3an2 1439 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
72, 2, 3, 6syl12anc 833 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
87biimpa 477 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 · 𝐴) ≤ (1 · 𝐴))
9 rpcn 12238 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
109adantr 481 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℂ)
11 sqval 13319 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
1211eqcomd 2799 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 𝐴) = (𝐴↑2))
1310, 12syl 17 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 · 𝐴) = (𝐴↑2))
149mulid2d 10494 . . . 4 (𝐴 ∈ ℝ+ → (1 · 𝐴) = 𝐴)
1514adantr 481 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (1 · 𝐴) = 𝐴)
168, 13, 153brtr3d 4987 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴↑2) ≤ 𝐴)
17 oveq1 7014 . . . 4 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
1817breq1d 4966 . . 3 (𝑥 = 𝐴 → ((𝑥↑2) ≤ 𝐴 ↔ (𝐴↑2) ≤ 𝐴))
19 sqrlem1.1 . . 3 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2018, 19elrab2 3616 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℝ+ ∧ (𝐴↑2) ≤ 𝐴))
211, 16, 20sylanbrc 583 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1520  wcel 2079  {crab 3107   class class class wbr 4956  (class class class)co 7007  supcsup 8740  cc 10370  cr 10371  0cc0 10372  1c1 10373   · cmul 10377   < clt 10510  cle 10511  2c2 11529  +crp 12228  cexp 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-n0 11735  df-z 11819  df-uz 12083  df-rp 12229  df-seq 13208  df-exp 13268
This theorem is referenced by:  sqrlem3  14426  sqrlem4  14427
  Copyright terms: Public domain W3C validator