MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem2 Structured version   Visualization version   GIF version

Theorem sqrlem2 14772
Description: Lemma for 01sqrex 14778. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
sqrlem2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem sqrlem2
StepHypRef Expression
1 simpl 486 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ+)
2 rpre 12559 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
3 rpgt0 12563 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 𝐴)
4 1re 10798 . . . . . 6 1 ∈ ℝ
5 lemul1 11649 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
64, 5mp3an2 1451 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
72, 2, 3, 6syl12anc 837 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
87biimpa 480 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 · 𝐴) ≤ (1 · 𝐴))
9 rpcn 12561 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
109adantr 484 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℂ)
11 sqval 13652 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
1211eqcomd 2742 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 𝐴) = (𝐴↑2))
1310, 12syl 17 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 · 𝐴) = (𝐴↑2))
149mulid2d 10816 . . . 4 (𝐴 ∈ ℝ+ → (1 · 𝐴) = 𝐴)
1514adantr 484 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (1 · 𝐴) = 𝐴)
168, 13, 153brtr3d 5070 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴↑2) ≤ 𝐴)
17 oveq1 7198 . . . 4 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
1817breq1d 5049 . . 3 (𝑥 = 𝐴 → ((𝑥↑2) ≤ 𝐴 ↔ (𝐴↑2) ≤ 𝐴))
19 sqrlem1.1 . . 3 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2018, 19elrab2 3594 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℝ+ ∧ (𝐴↑2) ≤ 𝐴))
211, 16, 20sylanbrc 586 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  {crab 3055   class class class wbr 5039  (class class class)co 7191  supcsup 9034  cc 10692  cr 10693  0cc0 10694  1c1 10695   · cmul 10699   < clt 10832  cle 10833  2c2 11850  +crp 12551  cexp 13600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601
This theorem is referenced by:  sqrlem3  14773  sqrlem4  14774
  Copyright terms: Public domain W3C validator