Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqrlem2 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 15030. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
sqrlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
sqrlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
sqrlem2 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ+) | |
2 | rpre 12808 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
3 | rpgt0 12812 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
4 | 1re 11045 | . . . . . 6 ⊢ 1 ∈ ℝ | |
5 | lemul1 11897 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴))) | |
6 | 4, 5 | mp3an2 1448 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴))) |
7 | 2, 2, 3, 6 | syl12anc 834 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴))) |
8 | 7 | biimpa 477 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐴 · 𝐴) ≤ (1 · 𝐴)) |
9 | rpcn 12810 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℂ) |
11 | sqval 13905 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
12 | 11 | eqcomd 2743 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · 𝐴) = (𝐴↑2)) |
13 | 10, 12 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐴 · 𝐴) = (𝐴↑2)) |
14 | 9 | mulid2d 11063 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 · 𝐴) = 𝐴) |
15 | 14 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (1 · 𝐴) = 𝐴) |
16 | 8, 13, 15 | 3brtr3d 5116 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ 𝐴) |
17 | oveq1 7320 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
18 | 17 | breq1d 5095 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥↑2) ≤ 𝐴 ↔ (𝐴↑2) ≤ 𝐴)) |
19 | sqrlem1.1 | . . 3 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
20 | 18, 19 | elrab2 3636 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℝ+ ∧ (𝐴↑2) ≤ 𝐴)) |
21 | 1, 16, 20 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3404 class class class wbr 5085 (class class class)co 7313 supcsup 9267 ℂcc 10939 ℝcr 10940 0cc0 10941 1c1 10942 · cmul 10946 < clt 11079 ≤ cle 11080 2c2 12098 ℝ+crp 12800 ↑cexp 13852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-seq 13792 df-exp 13853 |
This theorem is referenced by: sqrlem3 15025 sqrlem4 15026 |
Copyright terms: Public domain | W3C validator |