MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem2 Structured version   Visualization version   GIF version

Theorem sqrlem2 14883
Description: Lemma for 01sqrex 14889. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
sqrlem2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem sqrlem2
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ+)
2 rpre 12667 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
3 rpgt0 12671 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 𝐴)
4 1re 10906 . . . . . 6 1 ∈ ℝ
5 lemul1 11757 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
64, 5mp3an2 1447 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
72, 2, 3, 6syl12anc 833 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴)))
87biimpa 476 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 · 𝐴) ≤ (1 · 𝐴))
9 rpcn 12669 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
109adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℂ)
11 sqval 13763 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
1211eqcomd 2744 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 𝐴) = (𝐴↑2))
1310, 12syl 17 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 · 𝐴) = (𝐴↑2))
149mulid2d 10924 . . . 4 (𝐴 ∈ ℝ+ → (1 · 𝐴) = 𝐴)
1514adantr 480 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (1 · 𝐴) = 𝐴)
168, 13, 153brtr3d 5101 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴↑2) ≤ 𝐴)
17 oveq1 7262 . . . 4 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
1817breq1d 5080 . . 3 (𝑥 = 𝐴 → ((𝑥↑2) ≤ 𝐴 ↔ (𝐴↑2) ≤ 𝐴))
19 sqrlem1.1 . . 3 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2018, 19elrab2 3620 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℝ+ ∧ (𝐴↑2) ≤ 𝐴))
211, 16, 20sylanbrc 582 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067   class class class wbr 5070  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941  2c2 11958  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711
This theorem is referenced by:  sqrlem3  14884  sqrlem4  14885
  Copyright terms: Public domain W3C validator