![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrlem1 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 14397. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
sqrlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
sqrlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
sqrlem1 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6929 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) | |
2 | 1 | breq1d 4896 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴)) |
3 | sqrlem1.1 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
4 | 2, 3 | elrab2 3575 | . . 3 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) |
5 | simprr 763 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 𝐴) | |
6 | simplr 759 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ≤ 1) | |
7 | rpre 12145 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ) | |
8 | 7 | ad2antrl 718 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ∈ ℝ) |
9 | 8 | resqcld 13356 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ∈ ℝ) |
10 | rpre 12145 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
11 | 10 | ad2antrr 716 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ∈ ℝ) |
12 | 1re 10376 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
13 | letr 10470 | . . . . . . . . 9 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) | |
14 | 12, 13 | mp3an3 1523 | . . . . . . . 8 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
15 | 9, 11, 14 | syl2anc 579 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
16 | 5, 6, 15 | mp2and 689 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 1) |
17 | sq1 13277 | . . . . . 6 ⊢ (1↑2) = 1 | |
18 | 16, 17 | syl6breqr 4928 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ (1↑2)) |
19 | rpge0 12152 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ → 0 ≤ 𝑦) | |
20 | 19 | ad2antrl 718 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 0 ≤ 𝑦) |
21 | 0le1 10898 | . . . . . . 7 ⊢ 0 ≤ 1 | |
22 | le2sq 13257 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) | |
23 | 12, 21, 22 | mpanr12 695 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
24 | 8, 20, 23 | syl2anc 579 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
25 | 18, 24 | mpbird 249 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ≤ 1) |
26 | 25 | ex 403 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴) → 𝑦 ≤ 1)) |
27 | 4, 26 | syl5bi 234 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑦 ∈ 𝑆 → 𝑦 ≤ 1)) |
28 | 27 | ralrimiv 3146 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 {crab 3093 class class class wbr 4886 (class class class)co 6922 supcsup 8634 ℝcr 10271 0cc0 10272 1c1 10273 < clt 10411 ≤ cle 10412 2c2 11430 ℝ+crp 12137 ↑cexp 13178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-seq 13120 df-exp 13179 |
This theorem is referenced by: sqrlem3 14392 sqrlem4 14393 |
Copyright terms: Public domain | W3C validator |