Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqrlem4 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 14961. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
sqrlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
sqrlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
sqrlem4 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
2 | sqrlem1.1 | . . . . . 6 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
3 | 2, 1 | sqrlem3 14956 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦)) |
4 | suprcl 11935 | . . . . 5 ⊢ ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) → sup(𝑆, ℝ, < ) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ∈ ℝ) |
6 | 1, 5 | eqeltrid 2843 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ) |
7 | rpgt0 12742 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 0 < 𝐴) |
9 | 2, 1 | sqrlem2 14955 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
10 | suprub 11936 | . . . . . 6 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) ∧ 𝐴 ∈ 𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < )) | |
11 | 3, 9, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ≤ sup(𝑆, ℝ, < )) |
12 | 11, 1 | breqtrrdi 5116 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 𝐵) |
13 | 0re 10977 | . . . . 5 ⊢ 0 ∈ ℝ | |
14 | rpre 12738 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
15 | ltletr 11067 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) | |
16 | 13, 14, 6, 15 | mp3an2ani 1467 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) |
17 | 8, 12, 16 | mp2and 696 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 0 < 𝐵) |
18 | 6, 17 | elrpd 12769 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ+) |
19 | 2, 1 | sqrlem1 14954 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑧 ∈ 𝑆 𝑧 ≤ 1) |
20 | 1re 10975 | . . . . 5 ⊢ 1 ∈ ℝ | |
21 | suprleub 11941 | . . . . 5 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) ∧ 1 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧 ∈ 𝑆 𝑧 ≤ 1)) | |
22 | 3, 20, 21 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧 ∈ 𝑆 𝑧 ≤ 1)) |
23 | 19, 22 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ≤ 1) |
24 | 1, 23 | eqbrtrid 5109 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ≤ 1) |
25 | 18, 24 | jca 512 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 (class class class)co 7275 supcsup 9199 ℝcr 10870 0cc0 10871 1c1 10872 < clt 11009 ≤ cle 11010 2c2 12028 ℝ+crp 12730 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 |
This theorem is referenced by: sqrlem5 14958 sqrlem7 14960 01sqrex 14961 |
Copyright terms: Public domain | W3C validator |