![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrlem4 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 14374. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
sqrlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
sqrlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
sqrlem4 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
2 | sqrlem1.1 | . . . . . 6 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
3 | 2, 1 | sqrlem3 14369 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦)) |
4 | suprcl 11320 | . . . . 5 ⊢ ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) → sup(𝑆, ℝ, < ) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ∈ ℝ) |
6 | 1, 5 | syl5eqel 2910 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ) |
7 | rpgt0 12133 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
8 | 7 | adantr 474 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 0 < 𝐴) |
9 | 2, 1 | sqrlem2 14368 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
10 | suprub 11321 | . . . . . 6 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) ∧ 𝐴 ∈ 𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < )) | |
11 | 3, 9, 10 | syl2anc 579 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ≤ sup(𝑆, ℝ, < )) |
12 | 11, 1 | syl6breqr 4917 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 𝐵) |
13 | rpre 12127 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
14 | 13 | adantr 474 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ) |
15 | 0re 10365 | . . . . . 6 ⊢ 0 ∈ ℝ | |
16 | ltletr 10455 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) | |
17 | 15, 16 | mp3an1 1576 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) |
18 | 14, 6, 17 | syl2anc 579 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) |
19 | 8, 12, 18 | mp2and 690 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 0 < 𝐵) |
20 | 6, 19 | elrpd 12160 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ+) |
21 | 2, 1 | sqrlem1 14367 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑧 ∈ 𝑆 𝑧 ≤ 1) |
22 | 1re 10363 | . . . . 5 ⊢ 1 ∈ ℝ | |
23 | suprleub 11326 | . . . . 5 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) ∧ 1 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧 ∈ 𝑆 𝑧 ≤ 1)) | |
24 | 3, 22, 23 | sylancl 580 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧 ∈ 𝑆 𝑧 ≤ 1)) |
25 | 21, 24 | mpbird 249 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ≤ 1) |
26 | 1, 25 | syl5eqbr 4910 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ≤ 1) |
27 | 20, 26 | jca 507 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∀wral 3117 ∃wrex 3118 {crab 3121 ⊆ wss 3798 ∅c0 4146 class class class wbr 4875 (class class class)co 6910 supcsup 8621 ℝcr 10258 0cc0 10259 1c1 10260 < clt 10398 ≤ cle 10399 2c2 11413 ℝ+crp 12119 ↑cexp 13161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-seq 13103 df-exp 13162 |
This theorem is referenced by: sqrlem5 14371 sqrlem7 14373 01sqrex 14374 |
Copyright terms: Public domain | W3C validator |