Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem4 Structured version   Visualization version   GIF version

Theorem sqrlem4 14600
 Description: Lemma for 01sqrex 14604. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
sqrlem4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem sqrlem4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
2 sqrlem1.1 . . . . . 6 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
32, 1sqrlem3 14599 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
4 suprcl 11595 . . . . 5 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) → sup(𝑆, ℝ, < ) ∈ ℝ)
53, 4syl 17 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ∈ ℝ)
61, 5eqeltrid 2922 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
7 rpgt0 12396 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 𝐴)
87adantr 481 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 0 < 𝐴)
92, 1sqrlem2 14598 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
10 suprub 11596 . . . . . 6 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
113, 9, 10syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ≤ sup(𝑆, ℝ, < ))
1211, 1breqtrrdi 5105 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝐵)
13 0re 10637 . . . . 5 0 ∈ ℝ
14 rpre 12392 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
15 ltletr 10726 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
1613, 14, 6, 15mp3an2ani 1461 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
178, 12, 16mp2and 695 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 0 < 𝐵)
186, 17elrpd 12423 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ+)
192, 1sqrlem1 14597 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑧𝑆 𝑧 ≤ 1)
20 1re 10635 . . . . 5 1 ∈ ℝ
21 suprleub 11601 . . . . 5 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ 1 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧𝑆 𝑧 ≤ 1))
223, 20, 21sylancl 586 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧𝑆 𝑧 ≤ 1))
2319, 22mpbird 258 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ≤ 1)
241, 23eqbrtrid 5098 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ≤ 1)
2518, 24jca 512 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∀wral 3143  ∃wrex 3144  {crab 3147   ⊆ wss 3940  ∅c0 4295   class class class wbr 5063  (class class class)co 7150  supcsup 8898  ℝcr 10530  0cc0 10531  1c1 10532   < clt 10669   ≤ cle 10670  2c2 11686  ℝ+crp 12384  ↑cexp 13424 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-seq 13365  df-exp 13425 This theorem is referenced by:  sqrlem5  14601  sqrlem7  14603  01sqrex  14604
 Copyright terms: Public domain W3C validator