Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgrusgra Structured version   Visualization version   GIF version

Theorem stgrusgra 47926
Description: The star graph SN is a simple graph. (Contributed by AV, 11-Sep-2025.)
Assertion
Ref Expression
stgrusgra (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)

Proof of Theorem stgrusgra
Dummy variables 𝑒 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6886 . . . . 5 ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1-onto→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}
2 f1of1 6847 . . . . 5 (( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1-onto→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
31, 2mp1i 13 . . . 4 (𝑁 ∈ ℕ0 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
4 simpllr 776 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → 𝑘 ∈ 𝒫 (0...𝑁))
5 fveq2 6906 . . . . . . . . . . 11 (𝑘 = {0, 𝑥} → (♯‘𝑘) = (♯‘{0, 𝑥}))
6 0red 11264 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑁) → 0 ∈ ℝ)
7 elfznn 13593 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
87nngt0d 12315 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑁) → 0 < 𝑥)
96, 8ltned 11397 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑁) → 0 ≠ 𝑥)
10 c0ex 11255 . . . . . . . . . . . . . . 15 0 ∈ V
11 vex 3484 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1210, 11pm3.2i 470 . . . . . . . . . . . . . 14 (0 ∈ V ∧ 𝑥 ∈ V)
13 hashprg 14434 . . . . . . . . . . . . . 14 ((0 ∈ V ∧ 𝑥 ∈ V) → (0 ≠ 𝑥 ↔ (♯‘{0, 𝑥}) = 2))
1412, 13mp1i 13 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑁) → (0 ≠ 𝑥 ↔ (♯‘{0, 𝑥}) = 2))
159, 14mpbid 232 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑁) → (♯‘{0, 𝑥}) = 2)
1615adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) → (♯‘{0, 𝑥}) = 2)
175, 16sylan9eqr 2799 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → (♯‘𝑘) = 2)
184, 17jca 511 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2))
1918ex 412 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑘 = {0, 𝑥} → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
2019rexlimdva 3155 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) → (∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥} → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
2120expimpd 453 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑘 ∈ 𝒫 (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}) → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
22 eqeq1 2741 . . . . . . . 8 (𝑒 = 𝑘 → (𝑒 = {0, 𝑥} ↔ 𝑘 = {0, 𝑥}))
2322rexbidv 3179 . . . . . . 7 (𝑒 = 𝑘 → (∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}))
2423elrab 3692 . . . . . 6 (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ↔ (𝑘 ∈ 𝒫 (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}))
25 fveqeq2 6915 . . . . . . 7 (𝑒 = 𝑘 → ((♯‘𝑒) = 2 ↔ (♯‘𝑘) = 2))
2625elrab 3692 . . . . . 6 (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2} ↔ (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2))
2721, 24, 263imtr4g 296 . . . . 5 (𝑁 ∈ ℕ0 → (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} → 𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}))
2827ssrdv 3989 . . . 4 (𝑁 ∈ ℕ0 → {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ⊆ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
29 f1ss 6809 . . . 4 ((( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ∧ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ⊆ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}) → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
303, 28, 29syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
31 stgriedg 47922 . . . 4 (𝑁 ∈ ℕ0 → (iEdg‘(StarGr‘𝑁)) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
3231dmeqd 5916 . . . . 5 (𝑁 ∈ ℕ0 → dom (iEdg‘(StarGr‘𝑁)) = dom ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
33 dmresi 6070 . . . . 5 dom ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}
3432, 33eqtrdi 2793 . . . 4 (𝑁 ∈ ℕ0 → dom (iEdg‘(StarGr‘𝑁)) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
35 stgrvtx 47921 . . . . . 6 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
3635pweqd 4617 . . . . 5 (𝑁 ∈ ℕ0 → 𝒫 (Vtx‘(StarGr‘𝑁)) = 𝒫 (0...𝑁))
3736rabeqdv 3452 . . . 4 (𝑁 ∈ ℕ0 → {𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
3831, 34, 37f1eq123d 6840 . . 3 (𝑁 ∈ ℕ0 → ((iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2} ↔ ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}))
3930, 38mpbird 257 . 2 (𝑁 ∈ ℕ0 → (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2})
40 fvex 6919 . . 3 (StarGr‘𝑁) ∈ V
41 eqid 2737 . . . 4 (Vtx‘(StarGr‘𝑁)) = (Vtx‘(StarGr‘𝑁))
42 eqid 2737 . . . 4 (iEdg‘(StarGr‘𝑁)) = (iEdg‘(StarGr‘𝑁))
4341, 42isusgrs 29173 . . 3 ((StarGr‘𝑁) ∈ V → ((StarGr‘𝑁) ∈ USGraph ↔ (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2}))
4440, 43mp1i 13 . 2 (𝑁 ∈ ℕ0 → ((StarGr‘𝑁) ∈ USGraph ↔ (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2}))
4539, 44mpbird 257 1 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  𝒫 cpw 4600  {cpr 4628   I cid 5577  dom cdm 5685  cres 5687  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  2c2 12321  0cn0 12526  ...cfz 13547  chash 14369  Vtxcvtx 29013  iEdgciedg 29014  USGraphcusgr 29166  StarGrcstgr 47918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-hash 14370  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-edgf 29004  df-vtx 29015  df-iedg 29016  df-usgr 29168  df-stgr 47919
This theorem is referenced by:  isubgr3stgrlem8  47940  isubgr3stgr  47942
  Copyright terms: Public domain W3C validator