Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgrusgra Structured version   Visualization version   GIF version

Theorem stgrusgra 47953
Description: The star graph SN is a simple graph. (Contributed by AV, 11-Sep-2025.)
Assertion
Ref Expression
stgrusgra (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)

Proof of Theorem stgrusgra
Dummy variables 𝑒 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6802 . . . . 5 ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1-onto→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}
2 f1of1 6763 . . . . 5 (( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1-onto→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
31, 2mp1i 13 . . . 4 (𝑁 ∈ ℕ0 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
4 simpllr 775 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → 𝑘 ∈ 𝒫 (0...𝑁))
5 fveq2 6822 . . . . . . . . . . 11 (𝑘 = {0, 𝑥} → (♯‘𝑘) = (♯‘{0, 𝑥}))
6 0red 11118 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑁) → 0 ∈ ℝ)
7 elfznn 13456 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
87nngt0d 12177 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑁) → 0 < 𝑥)
96, 8ltned 11252 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑁) → 0 ≠ 𝑥)
10 c0ex 11109 . . . . . . . . . . . . . . 15 0 ∈ V
11 vex 3440 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1210, 11pm3.2i 470 . . . . . . . . . . . . . 14 (0 ∈ V ∧ 𝑥 ∈ V)
13 hashprg 14302 . . . . . . . . . . . . . 14 ((0 ∈ V ∧ 𝑥 ∈ V) → (0 ≠ 𝑥 ↔ (♯‘{0, 𝑥}) = 2))
1412, 13mp1i 13 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑁) → (0 ≠ 𝑥 ↔ (♯‘{0, 𝑥}) = 2))
159, 14mpbid 232 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑁) → (♯‘{0, 𝑥}) = 2)
1615adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) → (♯‘{0, 𝑥}) = 2)
175, 16sylan9eqr 2786 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → (♯‘𝑘) = 2)
184, 17jca 511 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2))
1918ex 412 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑘 = {0, 𝑥} → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
2019rexlimdva 3130 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) → (∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥} → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
2120expimpd 453 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑘 ∈ 𝒫 (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}) → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
22 eqeq1 2733 . . . . . . . 8 (𝑒 = 𝑘 → (𝑒 = {0, 𝑥} ↔ 𝑘 = {0, 𝑥}))
2322rexbidv 3153 . . . . . . 7 (𝑒 = 𝑘 → (∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}))
2423elrab 3648 . . . . . 6 (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ↔ (𝑘 ∈ 𝒫 (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}))
25 fveqeq2 6831 . . . . . . 7 (𝑒 = 𝑘 → ((♯‘𝑒) = 2 ↔ (♯‘𝑘) = 2))
2625elrab 3648 . . . . . 6 (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2} ↔ (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2))
2721, 24, 263imtr4g 296 . . . . 5 (𝑁 ∈ ℕ0 → (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} → 𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}))
2827ssrdv 3941 . . . 4 (𝑁 ∈ ℕ0 → {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ⊆ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
29 f1ss 6725 . . . 4 ((( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ∧ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ⊆ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}) → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
303, 28, 29syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
31 stgriedg 47949 . . . 4 (𝑁 ∈ ℕ0 → (iEdg‘(StarGr‘𝑁)) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
3231dmeqd 5848 . . . . 5 (𝑁 ∈ ℕ0 → dom (iEdg‘(StarGr‘𝑁)) = dom ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
33 dmresi 6003 . . . . 5 dom ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}
3432, 33eqtrdi 2780 . . . 4 (𝑁 ∈ ℕ0 → dom (iEdg‘(StarGr‘𝑁)) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
35 stgrvtx 47948 . . . . . 6 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
3635pweqd 4568 . . . . 5 (𝑁 ∈ ℕ0 → 𝒫 (Vtx‘(StarGr‘𝑁)) = 𝒫 (0...𝑁))
3736rabeqdv 3410 . . . 4 (𝑁 ∈ ℕ0 → {𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
3831, 34, 37f1eq123d 6756 . . 3 (𝑁 ∈ ℕ0 → ((iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2} ↔ ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}))
3930, 38mpbird 257 . 2 (𝑁 ∈ ℕ0 → (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2})
40 fvex 6835 . . 3 (StarGr‘𝑁) ∈ V
41 eqid 2729 . . . 4 (Vtx‘(StarGr‘𝑁)) = (Vtx‘(StarGr‘𝑁))
42 eqid 2729 . . . 4 (iEdg‘(StarGr‘𝑁)) = (iEdg‘(StarGr‘𝑁))
4341, 42isusgrs 29101 . . 3 ((StarGr‘𝑁) ∈ V → ((StarGr‘𝑁) ∈ USGraph ↔ (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2}))
4440, 43mp1i 13 . 2 (𝑁 ∈ ℕ0 → ((StarGr‘𝑁) ∈ USGraph ↔ (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2}))
4539, 44mpbird 257 1 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3394  Vcvv 3436  wss 3903  𝒫 cpw 4551  {cpr 4579   I cid 5513  dom cdm 5619  cres 5621  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010  2c2 12183  0cn0 12384  ...cfz 13410  chash 14237  Vtxcvtx 28941  iEdgciedg 28942  USGraphcusgr 29094  StarGrcstgr 47945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28934  df-vtx 28943  df-iedg 28944  df-usgr 29096  df-stgr 47946
This theorem is referenced by:  isubgr3stgrlem8  47967  isubgr3stgr  47969
  Copyright terms: Public domain W3C validator