Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgrusgra Structured version   Visualization version   GIF version

Theorem stgrusgra 47919
Description: The star graph SN is a simple graph. (Contributed by AV, 11-Sep-2025.)
Assertion
Ref Expression
stgrusgra (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)

Proof of Theorem stgrusgra
Dummy variables 𝑒 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6855 . . . . 5 ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1-onto→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}
2 f1of1 6816 . . . . 5 (( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1-onto→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
31, 2mp1i 13 . . . 4 (𝑁 ∈ ℕ0 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
4 simpllr 775 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → 𝑘 ∈ 𝒫 (0...𝑁))
5 fveq2 6875 . . . . . . . . . . 11 (𝑘 = {0, 𝑥} → (♯‘𝑘) = (♯‘{0, 𝑥}))
6 0red 11236 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑁) → 0 ∈ ℝ)
7 elfznn 13568 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
87nngt0d 12287 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...𝑁) → 0 < 𝑥)
96, 8ltned 11369 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑁) → 0 ≠ 𝑥)
10 c0ex 11227 . . . . . . . . . . . . . . 15 0 ∈ V
11 vex 3463 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1210, 11pm3.2i 470 . . . . . . . . . . . . . 14 (0 ∈ V ∧ 𝑥 ∈ V)
13 hashprg 14411 . . . . . . . . . . . . . 14 ((0 ∈ V ∧ 𝑥 ∈ V) → (0 ≠ 𝑥 ↔ (♯‘{0, 𝑥}) = 2))
1412, 13mp1i 13 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑁) → (0 ≠ 𝑥 ↔ (♯‘{0, 𝑥}) = 2))
159, 14mpbid 232 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑁) → (♯‘{0, 𝑥}) = 2)
1615adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) → (♯‘{0, 𝑥}) = 2)
175, 16sylan9eqr 2792 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → (♯‘𝑘) = 2)
184, 17jca 511 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑘 = {0, 𝑥}) → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2))
1918ex 412 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑘 = {0, 𝑥} → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
2019rexlimdva 3141 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ 𝒫 (0...𝑁)) → (∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥} → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
2120expimpd 453 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑘 ∈ 𝒫 (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}) → (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2)))
22 eqeq1 2739 . . . . . . . 8 (𝑒 = 𝑘 → (𝑒 = {0, 𝑥} ↔ 𝑘 = {0, 𝑥}))
2322rexbidv 3164 . . . . . . 7 (𝑒 = 𝑘 → (∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥} ↔ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}))
2423elrab 3671 . . . . . 6 (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ↔ (𝑘 ∈ 𝒫 (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝑘 = {0, 𝑥}))
25 fveqeq2 6884 . . . . . . 7 (𝑒 = 𝑘 → ((♯‘𝑒) = 2 ↔ (♯‘𝑘) = 2))
2625elrab 3671 . . . . . 6 (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2} ↔ (𝑘 ∈ 𝒫 (0...𝑁) ∧ (♯‘𝑘) = 2))
2721, 24, 263imtr4g 296 . . . . 5 (𝑁 ∈ ℕ0 → (𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} → 𝑘 ∈ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}))
2827ssrdv 3964 . . . 4 (𝑁 ∈ ℕ0 → {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ⊆ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
29 f1ss 6778 . . . 4 ((( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ∧ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}} ⊆ {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}) → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
303, 28, 29syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
31 stgriedg 47915 . . . 4 (𝑁 ∈ ℕ0 → (iEdg‘(StarGr‘𝑁)) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
3231dmeqd 5885 . . . . 5 (𝑁 ∈ ℕ0 → dom (iEdg‘(StarGr‘𝑁)) = dom ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}))
33 dmresi 6039 . . . . 5 dom ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}
3432, 33eqtrdi 2786 . . . 4 (𝑁 ∈ ℕ0 → dom (iEdg‘(StarGr‘𝑁)) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})
35 stgrvtx 47914 . . . . . 6 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
3635pweqd 4592 . . . . 5 (𝑁 ∈ ℕ0 → 𝒫 (Vtx‘(StarGr‘𝑁)) = 𝒫 (0...𝑁))
3736rabeqdv 3431 . . . 4 (𝑁 ∈ ℕ0 → {𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2})
3831, 34, 37f1eq123d 6809 . . 3 (𝑁 ∈ ℕ0 → ((iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2} ↔ ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}):{𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}–1-1→{𝑒 ∈ 𝒫 (0...𝑁) ∣ (♯‘𝑒) = 2}))
3930, 38mpbird 257 . 2 (𝑁 ∈ ℕ0 → (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2})
40 fvex 6888 . . 3 (StarGr‘𝑁) ∈ V
41 eqid 2735 . . . 4 (Vtx‘(StarGr‘𝑁)) = (Vtx‘(StarGr‘𝑁))
42 eqid 2735 . . . 4 (iEdg‘(StarGr‘𝑁)) = (iEdg‘(StarGr‘𝑁))
4341, 42isusgrs 29081 . . 3 ((StarGr‘𝑁) ∈ V → ((StarGr‘𝑁) ∈ USGraph ↔ (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2}))
4440, 43mp1i 13 . 2 (𝑁 ∈ ℕ0 → ((StarGr‘𝑁) ∈ USGraph ↔ (iEdg‘(StarGr‘𝑁)):dom (iEdg‘(StarGr‘𝑁))–1-1→{𝑒 ∈ 𝒫 (Vtx‘(StarGr‘𝑁)) ∣ (♯‘𝑒) = 2}))
4539, 44mpbird 257 1 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575  {cpr 4603   I cid 5547  dom cdm 5654  cres 5656  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128  2c2 12293  0cn0 12499  ...cfz 13522  chash 14346  Vtxcvtx 28921  iEdgciedg 28922  USGraphcusgr 29074  StarGrcstgr 47911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-hash 14347  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-edgf 28914  df-vtx 28923  df-iedg 28924  df-usgr 29076  df-stgr 47912
This theorem is referenced by:  isubgr3stgrlem8  47933  isubgr3stgr  47935
  Copyright terms: Public domain W3C validator