Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem8 | Structured version Visualization version GIF version |
Description: Lemma for dnibnd 34767. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibndlem8.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
dnibndlem8 | ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibndlem8.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | halfre 12288 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
4 | 1, 3 | jca 512 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ)) |
5 | simpl 483 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → 𝐴 ∈ ℝ) | |
6 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 / 2) ∈ ℝ) |
7 | 5, 6 | readdcld 11105 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ) |
8 | 4, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
9 | reflcl 13617 | . . . . 5 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
11 | 1, 10 | resubcld 11504 | . . 3 ⊢ (𝜑 → (𝐴 − (⌊‘(𝐴 + (1 / 2)))) ∈ ℝ) |
12 | 1 | dnicld1 34748 | . . 3 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) |
13 | 11 | leabsd 15225 | . . . 4 ⊢ (𝜑 → (𝐴 − (⌊‘(𝐴 + (1 / 2)))) ≤ (abs‘(𝐴 − (⌊‘(𝐴 + (1 / 2)))))) |
14 | 1 | recnd 11104 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
15 | 10 | recnd 11104 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ) |
16 | 14, 15 | abssubd 15264 | . . . 4 ⊢ (𝜑 → (abs‘(𝐴 − (⌊‘(𝐴 + (1 / 2))))) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
17 | 13, 16 | breqtrd 5118 | . . 3 ⊢ (𝜑 → (𝐴 − (⌊‘(𝐴 + (1 / 2)))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
18 | 11, 12, 3, 17 | lesub2dd 11693 | . 2 ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ ((1 / 2) − (𝐴 − (⌊‘(𝐴 + (1 / 2)))))) |
19 | 3 | recnd 11104 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
20 | 19, 14, 15 | subsub3d 11463 | . . 3 ⊢ (𝜑 → ((1 / 2) − (𝐴 − (⌊‘(𝐴 + (1 / 2))))) = (((1 / 2) + (⌊‘(𝐴 + (1 / 2)))) − 𝐴)) |
21 | 19, 15 | addcomd 11278 | . . . 4 ⊢ (𝜑 → ((1 / 2) + (⌊‘(𝐴 + (1 / 2)))) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2))) |
22 | 21 | oveq1d 7352 | . . 3 ⊢ (𝜑 → (((1 / 2) + (⌊‘(𝐴 + (1 / 2)))) − 𝐴) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
23 | 20, 22 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((1 / 2) − (𝐴 − (⌊‘(𝐴 + (1 / 2))))) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
24 | 18, 23 | breqtrd 5118 | 1 ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 ℝcr 10971 1c1 10973 + caddc 10975 ≤ cle 11111 − cmin 11306 / cdiv 11733 2c2 12129 ⌊cfl 13611 abscabs 15044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fl 13613 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 |
This theorem is referenced by: dnibndlem9 34762 |
Copyright terms: Public domain | W3C validator |