Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4sqlem5 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 16653. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem5 | ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 12415 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1 | zred 12414 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4sqlem5.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
6 | 5 | nnred 11976 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
7 | 6 | rehalfcld 12208 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
8 | 4, 7 | readdcld 10992 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℝ) |
9 | 5 | nnrpd 12758 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
10 | 8, 9 | modcld 13583 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
11 | 10 | recnd 10991 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
12 | 7 | recnd 10991 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℂ) |
13 | 11, 12 | subcld 11320 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ) |
14 | 3, 13 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
15 | 2, 14 | nncand 11325 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
16 | 2, 14 | subcld 11320 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
17 | 6 | recnd 10991 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 5 | nnne0d 12011 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≠ 0) |
19 | 16, 17, 18 | divcan1d 11740 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) = (𝐴 − 𝐵)) |
20 | 3 | oveq2i 7279 | . . . . . . . . 9 ⊢ (𝐴 − 𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
21 | 2, 11, 12 | subsub3d 11350 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
22 | 20, 21 | eqtrid 2790 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 − 𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
23 | 22 | oveq1d 7283 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀)) |
24 | moddifz 13591 | . . . . . . . 8 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) | |
25 | 8, 9, 24 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) |
26 | 23, 25 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
27 | 5 | nnzd 12413 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
28 | 26, 27 | zmulcld 12420 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) ∈ ℤ) |
29 | 19, 28 | eqeltrrd 2840 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
30 | 1, 29 | zsubcld 12419 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) ∈ ℤ) |
31 | 15, 30 | eqeltrrd 2840 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
32 | 31, 26 | jca 512 | 1 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7268 ℂcc 10857 ℝcr 10858 + caddc 10862 · cmul 10864 − cmin 11193 / cdiv 11620 ℕcn 11961 2c2 12016 ℤcz 12307 ℝ+crp 12718 mod cmo 13577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-sup 9189 df-inf 9190 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-n0 12222 df-z 12308 df-uz 12571 df-rp 12719 df-fl 13500 df-mod 13578 |
This theorem is referenced by: 4sqlem7 16633 4sqlem8 16634 4sqlem9 16635 4sqlem10 16636 4sqlem14 16647 4sqlem15 16648 4sqlem16 16649 4sqlem17 16650 2sqlem8a 26561 2sqlem8 26562 |
Copyright terms: Public domain | W3C validator |