Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4sqlem5 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 16646. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem5 | ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 12409 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1 | zred 12408 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4sqlem5.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
6 | 5 | nnred 11971 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
7 | 6 | rehalfcld 12203 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
8 | 4, 7 | readdcld 10988 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℝ) |
9 | 5 | nnrpd 12752 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
10 | 8, 9 | modcld 13576 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
11 | 10 | recnd 10987 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
12 | 7 | recnd 10987 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℂ) |
13 | 11, 12 | subcld 11315 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ) |
14 | 3, 13 | eqeltrid 2844 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
15 | 2, 14 | nncand 11320 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
16 | 2, 14 | subcld 11315 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
17 | 6 | recnd 10987 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 5 | nnne0d 12006 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≠ 0) |
19 | 16, 17, 18 | divcan1d 11735 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) = (𝐴 − 𝐵)) |
20 | 3 | oveq2i 7279 | . . . . . . . . 9 ⊢ (𝐴 − 𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
21 | 2, 11, 12 | subsub3d 11345 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
22 | 20, 21 | eqtrid 2791 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 − 𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
23 | 22 | oveq1d 7283 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀)) |
24 | moddifz 13584 | . . . . . . . 8 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) | |
25 | 8, 9, 24 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) |
26 | 23, 25 | eqeltrd 2840 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
27 | 5 | nnzd 12407 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
28 | 26, 27 | zmulcld 12414 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) ∈ ℤ) |
29 | 19, 28 | eqeltrrd 2841 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
30 | 1, 29 | zsubcld 12413 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) ∈ ℤ) |
31 | 15, 30 | eqeltrrd 2841 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
32 | 31, 26 | jca 511 | 1 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 ℝcr 10854 + caddc 10858 · cmul 10860 − cmin 11188 / cdiv 11615 ℕcn 11956 2c2 12011 ℤcz 12302 ℝ+crp 12712 mod cmo 13570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fl 13493 df-mod 13571 |
This theorem is referenced by: 4sqlem7 16626 4sqlem8 16627 4sqlem9 16628 4sqlem10 16629 4sqlem14 16640 4sqlem15 16641 4sqlem16 16642 4sqlem17 16643 2sqlem8a 26554 2sqlem8 26555 |
Copyright terms: Public domain | W3C validator |