MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem5 Structured version   Visualization version   GIF version

Theorem 4sqlem5 16854
Description: Lemma for 4sq 16876. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem5 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))

Proof of Theorem 4sqlem5
StepHypRef Expression
1 4sqlem5.2 . . . . 5 (𝜑𝐴 ∈ ℤ)
21zcnd 12578 . . . 4 (𝜑𝐴 ∈ ℂ)
3 4sqlem5.4 . . . . 5 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
41zred 12577 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
5 4sqlem5.3 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
65nnred 12140 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
76rehalfcld 12368 . . . . . . . . 9 (𝜑 → (𝑀 / 2) ∈ ℝ)
84, 7readdcld 11141 . . . . . . . 8 (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℝ)
95nnrpd 12932 . . . . . . . 8 (𝜑𝑀 ∈ ℝ+)
108, 9modcld 13779 . . . . . . 7 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ)
1110recnd 11140 . . . . . 6 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
127recnd 11140 . . . . . 6 (𝜑 → (𝑀 / 2) ∈ ℂ)
1311, 12subcld 11472 . . . . 5 (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ)
143, 13eqeltrid 2835 . . . 4 (𝜑𝐵 ∈ ℂ)
152, 14nncand 11477 . . 3 (𝜑 → (𝐴 − (𝐴𝐵)) = 𝐵)
162, 14subcld 11472 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ ℂ)
176recnd 11140 . . . . . 6 (𝜑𝑀 ∈ ℂ)
185nnne0d 12175 . . . . . 6 (𝜑𝑀 ≠ 0)
1916, 17, 18divcan1d 11898 . . . . 5 (𝜑 → (((𝐴𝐵) / 𝑀) · 𝑀) = (𝐴𝐵))
203oveq2i 7357 . . . . . . . . 9 (𝐴𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))
212, 11, 12subsub3d 11502 . . . . . . . . 9 (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)))
2220, 21eqtrid 2778 . . . . . . . 8 (𝜑 → (𝐴𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)))
2322oveq1d 7361 . . . . . . 7 (𝜑 → ((𝐴𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀))
24 moddifz 13787 . . . . . . . 8 (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ)
258, 9, 24syl2anc 584 . . . . . . 7 (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ)
2623, 25eqeltrd 2831 . . . . . 6 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
275nnzd 12495 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2826, 27zmulcld 12583 . . . . 5 (𝜑 → (((𝐴𝐵) / 𝑀) · 𝑀) ∈ ℤ)
2919, 28eqeltrrd 2832 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℤ)
301, 29zsubcld 12582 . . 3 (𝜑 → (𝐴 − (𝐴𝐵)) ∈ ℤ)
3115, 30eqeltrrd 2832 . 2 (𝜑𝐵 ∈ ℤ)
3231, 26jca 511 1 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004  cr 11005   + caddc 11009   · cmul 11011  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  cz 12468  +crp 12890   mod cmo 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fl 13696  df-mod 13774
This theorem is referenced by:  4sqlem7  16856  4sqlem8  16857  4sqlem9  16858  4sqlem10  16859  4sqlem14  16870  4sqlem15  16871  4sqlem16  16872  4sqlem17  16873  2sqlem8a  27363  2sqlem8  27364
  Copyright terms: Public domain W3C validator