![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4sqlem5 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 16997. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem5 | ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 12720 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1 | zred 12719 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4sqlem5.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
6 | 5 | nnred 12278 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
7 | 6 | rehalfcld 12510 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
8 | 4, 7 | readdcld 11287 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℝ) |
9 | 5 | nnrpd 13072 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
10 | 8, 9 | modcld 13911 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
11 | 10 | recnd 11286 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
12 | 7 | recnd 11286 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℂ) |
13 | 11, 12 | subcld 11617 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ) |
14 | 3, 13 | eqeltrid 2842 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
15 | 2, 14 | nncand 11622 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
16 | 2, 14 | subcld 11617 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
17 | 6 | recnd 11286 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 5 | nnne0d 12313 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≠ 0) |
19 | 16, 17, 18 | divcan1d 12041 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) = (𝐴 − 𝐵)) |
20 | 3 | oveq2i 7441 | . . . . . . . . 9 ⊢ (𝐴 − 𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
21 | 2, 11, 12 | subsub3d 11647 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
22 | 20, 21 | eqtrid 2786 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 − 𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
23 | 22 | oveq1d 7445 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀)) |
24 | moddifz 13919 | . . . . . . . 8 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) | |
25 | 8, 9, 24 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) |
26 | 23, 25 | eqeltrd 2838 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
27 | 5 | nnzd 12637 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
28 | 26, 27 | zmulcld 12725 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) ∈ ℤ) |
29 | 19, 28 | eqeltrrd 2839 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
30 | 1, 29 | zsubcld 12724 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) ∈ ℤ) |
31 | 15, 30 | eqeltrrd 2839 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
32 | 31, 26 | jca 511 | 1 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 ℝcr 11151 + caddc 11155 · cmul 11157 − cmin 11489 / cdiv 11917 ℕcn 12263 2c2 12318 ℤcz 12610 ℝ+crp 13031 mod cmo 13905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fl 13828 df-mod 13906 |
This theorem is referenced by: 4sqlem7 16977 4sqlem8 16978 4sqlem9 16979 4sqlem10 16980 4sqlem14 16991 4sqlem15 16992 4sqlem16 16993 4sqlem17 16994 2sqlem8a 27483 2sqlem8 27484 |
Copyright terms: Public domain | W3C validator |