Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem7 Structured version   Visualization version   GIF version

Theorem dnibndlem7 36450
Description: Lemma for dnibnd 36457. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnibndlem7.1 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem7 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))

Proof of Theorem dnibndlem7
StepHypRef Expression
1 dnibndlem7.1 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
2 halfre 12507 . . . . . . . . 9 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
41, 3jca 511 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
5 readdcl 11267 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
64, 5syl 17 . . . . . 6 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
7 reflcl 13847 . . . . . 6 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
86, 7syl 17 . . . . 5 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
98, 1jca 511 . . . 4 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ 𝐵 ∈ ℝ))
10 resubcl 11600 . . . 4 (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℝ)
119, 10syl 17 . . 3 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℝ)
121dnicld1 36438 . . 3 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
1311leabsd 15463 . . 3 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
1411, 12, 3, 13lesub2dd 11907 . 2 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
153recnd 11318 . . . 4 (𝜑 → (1 / 2) ∈ ℂ)
168recnd 11318 . . . 4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
171recnd 11318 . . . 4 (𝜑𝐵 ∈ ℂ)
1815, 16, 17subsub3d 11677 . . 3 (𝜑 → ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((1 / 2) + 𝐵) − (⌊‘(𝐵 + (1 / 2)))))
1915, 17addcomd 11492 . . . 4 (𝜑 → ((1 / 2) + 𝐵) = (𝐵 + (1 / 2)))
2019oveq1d 7463 . . 3 (𝜑 → (((1 / 2) + 𝐵) − (⌊‘(𝐵 + (1 / 2)))) = ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2)))))
2117, 16, 15subsub3d 11677 . . . 4 (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) = ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2)))))
2221eqcomd 2746 . . 3 (𝜑 → ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2)))) = (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
2318, 20, 223eqtrd 2784 . 2 (𝜑 → ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
2414, 23breqtrd 5192 1 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  cfl 13841  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  dnibndlem9  36452
  Copyright terms: Public domain W3C validator