Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem7 | Structured version Visualization version GIF version |
Description: Lemma for dnibnd 34598. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibndlem7.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
dnibndlem7 | ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibndlem7.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | halfre 12117 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
3 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
4 | 1, 3 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ)) |
5 | readdcl 10885 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
7 | reflcl 13444 | . . . . . 6 ⊢ ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) |
9 | 8, 1 | jca 511 | . . . 4 ⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
10 | resubcl 11215 | . . . 4 ⊢ (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℝ) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℝ) |
12 | 1 | dnicld1 34579 | . . 3 ⊢ (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) |
13 | 11 | leabsd 15054 | . . 3 ⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
14 | 11, 12, 3, 13 | lesub2dd 11522 | . 2 ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
15 | 3 | recnd 10934 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
16 | 8 | recnd 10934 | . . . 4 ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ) |
17 | 1 | recnd 10934 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
18 | 15, 16, 17 | subsub3d 11292 | . . 3 ⊢ (𝜑 → ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((1 / 2) + 𝐵) − (⌊‘(𝐵 + (1 / 2))))) |
19 | 15, 17 | addcomd 11107 | . . . 4 ⊢ (𝜑 → ((1 / 2) + 𝐵) = (𝐵 + (1 / 2))) |
20 | 19 | oveq1d 7270 | . . 3 ⊢ (𝜑 → (((1 / 2) + 𝐵) − (⌊‘(𝐵 + (1 / 2)))) = ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2))))) |
21 | 17, 16, 15 | subsub3d 11292 | . . . 4 ⊢ (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) = ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2))))) |
22 | 21 | eqcomd 2744 | . . 3 ⊢ (𝜑 → ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2)))) = (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))) |
23 | 18, 20, 22 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))) |
24 | 14, 23 | breqtrd 5096 | 1 ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 ≤ cle 10941 − cmin 11135 / cdiv 11562 2c2 11958 ⌊cfl 13438 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: dnibndlem9 34593 |
Copyright terms: Public domain | W3C validator |