MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzofz Structured version   Visualization version   GIF version

Theorem elfzofz 13331
Description: A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
elfzofz (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...𝑁))

Proof of Theorem elfzofz
StepHypRef Expression
1 elfzouz 13320 . 2 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ𝑀))
2 elfzouz2 13330 . 2 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝐾))
3 elfzuzb 13179 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
41, 2, 3sylanbrc 582 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6418  (class class class)co 7255  cuz 12511  ...cfz 13168  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  fzossfz  13334  elfzom1elp1fzo  13382  uzindi  13630  swrdfv0  14290  pfxsuffeqwrdeq  14339  telfsumo  15442  telfsumo2  15443  fsumparts  15446  prodfn0  15534  hashgcdlem  16417  cshwshashlem2  16726  efgs1b  19257  efgredlem  19268  cpmadugsumlemF  21933  dvfsumle  25090  dvfsumabs  25092  dvntaylp  25435  taylthlem1  25437  taylthlem2  25438  pntpbnd1  26639  pntlemj  26656  pntlemi  26657  pntlemf  26658  upgrewlkle2  27876  wlk1walk  27908  wlkp1lem6  27948  trlreslem  27969  upgrwlkdvdelem  28005  crctcshwlkn0lem4  28079  crctcshwlkn0lem5  28080  crctcshwlkn0lem6  28081  clwwisshclwws  28280  trlsegvdeglem1  28485  fzone1  31023  poimirlem24  35728  poimirlem25  35729  poimirlem29  35733  poimirlem31  35735  elfzfzo  42704  dvnmptdivc  43369  fourierdlem1  43539  fourierdlem12  43550  fourierdlem14  43552  fourierdlem15  43553  fourierdlem20  43558  fourierdlem25  43563  fourierdlem27  43565  fourierdlem41  43579  fourierdlem46  43583  fourierdlem48  43585  fourierdlem49  43586  fourierdlem50  43587  fourierdlem54  43591  fourierdlem63  43600  fourierdlem64  43601  fourierdlem65  43602  fourierdlem69  43606  fourierdlem70  43607  fourierdlem71  43608  fourierdlem72  43609  fourierdlem73  43610  fourierdlem74  43611  fourierdlem75  43612  fourierdlem76  43613  fourierdlem79  43616  fourierdlem80  43617  fourierdlem81  43618  fourierdlem84  43621  fourierdlem85  43622  fourierdlem88  43625  fourierdlem89  43626  fourierdlem90  43627  fourierdlem91  43628  fourierdlem92  43629  fourierdlem93  43630  fourierdlem94  43631  fourierdlem97  43634  fourierdlem102  43639  fourierdlem103  43640  fourierdlem104  43641  fourierdlem111  43648  fourierdlem113  43650  fourierdlem114  43651  iccpartiltu  44762  iccelpart  44773  iccpartiun  44774  icceuelpartlem  44775  icceuelpart  44776  iccpartdisj  44777  iccpartnel  44778
  Copyright terms: Public domain W3C validator