Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swrdfv | Structured version Visualization version GIF version |
Description: A symbol in an extracted subword, indexed using the subword's indices. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
swrdfv | ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^(𝐿 − 𝐹))) → ((𝑆 substr 〈𝐹, 𝐿〉)‘𝑋) = (𝑆‘(𝑋 + 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdval2 14357 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))) | |
2 | 1 | fveq1d 6773 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr 〈𝐹, 𝐿〉)‘𝑋) = ((𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))‘𝑋)) |
3 | fvoveq1 7294 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑆‘(𝑥 + 𝐹)) = (𝑆‘(𝑋 + 𝐹))) | |
4 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) | |
5 | fvex 6784 | . . 3 ⊢ (𝑆‘(𝑋 + 𝐹)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6872 | . 2 ⊢ (𝑋 ∈ (0..^(𝐿 − 𝐹)) → ((𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))‘𝑋) = (𝑆‘(𝑋 + 𝐹))) |
7 | 2, 6 | sylan9eq 2800 | 1 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^(𝐿 − 𝐹))) → ((𝑆 substr 〈𝐹, 𝐿〉)‘𝑋) = (𝑆‘(𝑋 + 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 〈cop 4573 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 0cc0 10872 + caddc 10875 − cmin 11205 ...cfz 13238 ..^cfzo 13381 ♯chash 14042 Word cword 14215 substr csubstr 14351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 df-hash 14043 df-word 14216 df-substr 14352 |
This theorem is referenced by: swrdfv0 14360 swrdfv2 14372 swrds1 14377 ccatswrd 14379 swrdccat2 14380 pfxfv 14393 ccatpfx 14412 swrdswrd 14416 swrdccatin1 14436 swrdccatin2 14440 pfxccatin12lem2 14442 pfxccatin12lem3 14443 cshwidxmod 14514 swrdco 14548 swrdf1 31224 splfv3 31226 revpfxsfxrev 33073 |
Copyright terms: Public domain | W3C validator |