| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cshwidxm | Structured version Visualization version GIF version | ||
| Description: The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| Ref | Expression |
|---|---|
| cshwidxm | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
| 2 | elfzelz 13431 | . . . 4 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ) |
| 4 | ubmelfzo 13637 | . . . 4 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) |
| 6 | cshwidxmod 14717 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)))) | |
| 7 | 1, 3, 5, 6 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)))) |
| 8 | elfz1b 13500 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊))) | |
| 9 | nncn 12144 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 10 | nncn 12144 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ) | |
| 11 | 9, 10 | anim12ci 614 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 12 | 11 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 13 | 8, 12 | sylbi 217 | . . . . . . 7 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 14 | npcan 11380 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊)) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊)) |
| 16 | 15 | oveq1d 7370 | . . . . 5 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊))) |
| 17 | 16 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊))) |
| 18 | nnrp 12908 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+) | |
| 19 | modid0 13808 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
| 21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
| 22 | 8, 21 | sylbi 217 | . . . . 5 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
| 24 | 17, 23 | eqtrd 2768 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = 0) |
| 25 | 24 | fveq2d 6835 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))) = (𝑊‘0)) |
| 26 | 7, 25 | eqtrd 2768 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 0cc0 11017 1c1 11018 + caddc 11020 ≤ cle 11158 − cmin 11355 ℕcn 12136 ℤcz 12479 ℝ+crp 12896 ...cfz 13414 ..^cfzo 13561 mod cmo 13780 ♯chash 14244 Word cword 14427 cyclShift ccsh 14702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-hash 14245 df-word 14428 df-concat 14485 df-substr 14556 df-pfx 14586 df-csh 14703 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |