| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cshwidxm | Structured version Visualization version GIF version | ||
| Description: The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| Ref | Expression |
|---|---|
| cshwidxm | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
| 2 | elfzelz 13491 | . . . 4 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ) |
| 4 | ubmelfzo 13697 | . . . 4 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) |
| 6 | cshwidxmod 14774 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)))) | |
| 7 | 1, 3, 5, 6 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)))) |
| 8 | elfz1b 13560 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊))) | |
| 9 | nncn 12195 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 10 | nncn 12195 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ) | |
| 11 | 9, 10 | anim12ci 614 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 12 | 11 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 13 | 8, 12 | sylbi 217 | . . . . . . 7 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
| 14 | npcan 11436 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊)) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊)) |
| 16 | 15 | oveq1d 7404 | . . . . 5 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊))) |
| 17 | 16 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊))) |
| 18 | nnrp 12969 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+) | |
| 19 | modid0 13865 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
| 21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
| 22 | 8, 21 | sylbi 217 | . . . . 5 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
| 24 | 17, 23 | eqtrd 2765 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = 0) |
| 25 | 24 | fveq2d 6864 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))) = (𝑊‘0)) |
| 26 | 7, 25 | eqtrd 2765 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 1c1 11075 + caddc 11077 ≤ cle 11215 − cmin 11411 ℕcn 12187 ℤcz 12535 ℝ+crp 12957 ...cfz 13474 ..^cfzo 13621 mod cmo 13837 ♯chash 14301 Word cword 14484 cyclShift ccsh 14759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-fl 13760 df-mod 13838 df-hash 14302 df-word 14485 df-concat 14542 df-substr 14612 df-pfx 14642 df-csh 14760 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |