MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxm Structured version   Visualization version   GIF version

Theorem cshwidxm 14828
Description: The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxm ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0))

Proof of Theorem cshwidxm
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzelz 13546 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 ubmelfzo 13751 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊)))
54adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊)))
6 cshwidxmod 14823 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))))
71, 3, 5, 6syl3anc 1372 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))))
8 elfz1b 13615 . . . . . . . 8 (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)))
9 nncn 12256 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
10 nncn 12256 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
119, 10anim12ci 614 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ))
12113adant3 1132 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ))
138, 12sylbi 217 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ))
14 npcan 11499 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊))
1513, 14syl 17 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊))
1615oveq1d 7428 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊)))
1716adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊)))
18 nnrp 13028 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
19 modid0 13919 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
2018, 19syl 17 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
21203ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
228, 21sylbi 217 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
2322adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
2417, 23eqtrd 2769 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = 0)
2524fveq2d 6890 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))) = (𝑊‘0))
267, 25eqtrd 2769 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137  1c1 11138   + caddc 11140  cle 11278  cmin 11474  cn 12248  cz 12596  +crp 13016  ...cfz 13529  ..^cfzo 13676   mod cmo 13891  chash 14351  Word cword 14534   cyclShift ccsh 14808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14352  df-word 14535  df-concat 14591  df-substr 14661  df-pfx 14691  df-csh 14809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator