![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwidxm | Structured version Visualization version GIF version |
Description: The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
cshwidxm | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
2 | elfzelz 13584 | . . . 4 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ) |
4 | ubmelfzo 13781 | . . . 4 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) |
6 | cshwidxmod 14851 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)))) | |
7 | 1, 3, 5, 6 | syl3anc 1371 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)))) |
8 | elfz1b 13653 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊))) | |
9 | nncn 12301 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
10 | nncn 12301 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ) | |
11 | 9, 10 | anim12ci 613 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
12 | 11 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
13 | 8, 12 | sylbi 217 | . . . . . . 7 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
14 | npcan 11545 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊)) |
16 | 15 | oveq1d 7463 | . . . . 5 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊))) |
17 | 16 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊))) |
18 | nnrp 13068 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+) | |
19 | modid0 13948 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
22 | 8, 21 | sylbi 217 | . . . . 5 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
23 | 22 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) mod (♯‘𝑊)) = 0) |
24 | 17, 23 | eqtrd 2780 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = 0) |
25 | 24 | fveq2d 6924 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))) = (𝑊‘0)) |
26 | 7, 25 | eqtrd 2780 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 ≤ cle 11325 − cmin 11520 ℕcn 12293 ℤcz 12639 ℝ+crp 13057 ...cfz 13567 ..^cfzo 13711 mod cmo 13920 ♯chash 14379 Word cword 14562 cyclShift ccsh 14836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-hash 14380 df-word 14563 df-concat 14619 df-substr 14689 df-pfx 14719 df-csh 14837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |