MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxm Structured version   Visualization version   GIF version

Theorem cshwidxm 14779
Description: The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxm ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0))

Proof of Theorem cshwidxm
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzelz 13491 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 ubmelfzo 13697 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊)))
54adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊)))
6 cshwidxmod 14774 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 𝑁) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))))
71, 3, 5, 6syl3anc 1373 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))))
8 elfz1b 13560 . . . . . . . 8 (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)))
9 nncn 12195 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
10 nncn 12195 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
119, 10anim12ci 614 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ))
12113adant3 1132 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ))
138, 12sylbi 217 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ))
14 npcan 11436 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊))
1513, 14syl 17 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) + 𝑁) = (♯‘𝑊))
1615oveq1d 7404 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊)))
1716adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) mod (♯‘𝑊)))
18 nnrp 12969 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
19 modid0 13865 . . . . . . . 8 ((♯‘𝑊) ∈ ℝ+ → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
2018, 19syl 17 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
21203ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
228, 21sylbi 217 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
2322adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) mod (♯‘𝑊)) = 0)
2417, 23eqtrd 2765 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊)) = 0)
2524fveq2d 6864 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 𝑁) + 𝑁) mod (♯‘𝑊))) = (𝑊‘0))
267, 25eqtrd 2765 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5109  cfv 6513  (class class class)co 7389  cc 11072  0cc0 11074  1c1 11075   + caddc 11077  cle 11215  cmin 11411  cn 12187  cz 12535  +crp 12957  ...cfz 13474  ..^cfzo 13621   mod cmo 13837  chash 14301  Word cword 14484   cyclShift ccsh 14759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-hash 14302  df-word 14485  df-concat 14542  df-substr 14612  df-pfx 14642  df-csh 14760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator