MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfzo0 Structured version   Visualization version   GIF version

Theorem hashfzo0 14337
Description: Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo0 (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵)

Proof of Theorem hashfzo0
StepHypRef Expression
1 hashfzo 14336 . . 3 (𝐵 ∈ (ℤ‘0) → (♯‘(0..^𝐵)) = (𝐵 − 0))
2 nn0uz 12774 . . 3 0 = (ℤ‘0)
31, 2eleq2s 2849 . 2 (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = (𝐵 − 0))
4 nn0cn 12391 . . 3 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
54subid1d 11461 . 2 (𝐵 ∈ ℕ0 → (𝐵 − 0) = 𝐵)
63, 5eqtrd 2766 1 (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  0cc0 11006  cmin 11344  0cn0 12381  cuz 12732  ..^cfzo 13554  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238
This theorem is referenced by:  ffzo0hash  14356  tpf1o  14408  hashwrdn  14454  eqwrd  14464  wrdred1hash  14468  ccatlen  14482  ccatalpha  14501  swrdlen  14555  swrdwrdsymb  14570  pfxlen  14591  revlen  14669  repswlen  14683  s7f1o  14873  ofccat  14876  crth  16689  phisum  16702  cshwshashnsame  17015  chnpolleha  18538  pmtrdifwrdellem2  19395  odhash2  19488  ablfaclem3  20002  znhash  21496  wrdpmtrlast  33060  cycpmconjslem2  33122  1arithidomlem1  33498  1arithidomlem2  33499  1arithidom  33500  ply1degltdim  33634  subiwrdlen  34397  ccatmulgnn0dir  34553  ofcccat  34554  signstlen  34578  signsvtn0  34581  signstres  34586  signshlen  34601  reprlt  34630  reprgt  34632  breprexpnat  34645  circlemethnat  34652  circlevma  34653  hgt750lema  34668  lpadlem2  34691  frlmvscadiccat  42545  fltnltalem  42701  amgm2d  44237  amgm3d  44238  amgm4d  44239  fourierdlem73  46223  grtriprop  47978  grtriclwlk3  47982  gpgorder  48096
  Copyright terms: Public domain W3C validator