MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfzo0 Structured version   Visualization version   GIF version

Theorem hashfzo0 14395
Description: Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo0 (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵)

Proof of Theorem hashfzo0
StepHypRef Expression
1 hashfzo 14394 . . 3 (𝐵 ∈ (ℤ‘0) → (♯‘(0..^𝐵)) = (𝐵 − 0))
2 nn0uz 12835 . . 3 0 = (ℤ‘0)
31, 2eleq2s 2846 . 2 (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = (𝐵 − 0))
4 nn0cn 12452 . . 3 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
54subid1d 11522 . 2 (𝐵 ∈ ℕ0 → (𝐵 − 0) = 𝐵)
63, 5eqtrd 2764 1 (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  0cc0 11068  cmin 11405  0cn0 12442  cuz 12793  ..^cfzo 13615  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296
This theorem is referenced by:  ffzo0hash  14414  tpf1o  14466  hashwrdn  14512  eqwrd  14522  wrdred1hash  14526  ccatlen  14540  ccatalpha  14558  swrdlen  14612  swrdwrdsymb  14627  pfxlen  14648  revlen  14727  repswlen  14741  s7f1o  14932  ofccat  14935  crth  16748  phisum  16761  cshwshashnsame  17074  pmtrdifwrdellem2  19412  odhash2  19505  ablfaclem3  20019  znhash  21468  wrdpmtrlast  33050  cycpmconjslem2  33112  1arithidomlem1  33506  1arithidomlem2  33507  1arithidom  33508  ply1degltdim  33619  subiwrdlen  34377  ccatmulgnn0dir  34533  ofcccat  34534  signstlen  34558  signsvtn0  34561  signstres  34566  signshlen  34581  reprlt  34610  reprgt  34612  breprexpnat  34625  circlemethnat  34632  circlevma  34633  hgt750lema  34648  lpadlem2  34671  frlmvscadiccat  42494  fltnltalem  42650  amgm2d  44187  amgm3d  44188  amgm4d  44189  fourierdlem73  46177  grtriprop  47937  grtriclwlk3  47941  gpgorder  48047
  Copyright terms: Public domain W3C validator