| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfzo0 | Structured version Visualization version GIF version | ||
| Description: Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| hashfzo0 | ⊢ (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashfzo 14336 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘0) → (♯‘(0..^𝐵)) = (𝐵 − 0)) | |
| 2 | nn0uz 12774 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 3 | 1, 2 | eleq2s 2849 | . 2 ⊢ (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = (𝐵 − 0)) |
| 4 | nn0cn 12391 | . . 3 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ) | |
| 5 | 4 | subid1d 11461 | . 2 ⊢ (𝐵 ∈ ℕ0 → (𝐵 − 0) = 𝐵) |
| 6 | 3, 5 | eqtrd 2766 | 1 ⊢ (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 0cc0 11006 − cmin 11344 ℕ0cn0 12381 ℤ≥cuz 12732 ..^cfzo 13554 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 |
| This theorem is referenced by: ffzo0hash 14356 tpf1o 14408 hashwrdn 14454 eqwrd 14464 wrdred1hash 14468 ccatlen 14482 ccatalpha 14501 swrdlen 14555 swrdwrdsymb 14570 pfxlen 14591 revlen 14669 repswlen 14683 s7f1o 14873 ofccat 14876 crth 16689 phisum 16702 cshwshashnsame 17015 chnpolleha 18538 pmtrdifwrdellem2 19395 odhash2 19488 ablfaclem3 20002 znhash 21496 wrdpmtrlast 33060 cycpmconjslem2 33122 1arithidomlem1 33498 1arithidomlem2 33499 1arithidom 33500 ply1degltdim 33634 subiwrdlen 34397 ccatmulgnn0dir 34553 ofcccat 34554 signstlen 34578 signsvtn0 34581 signstres 34586 signshlen 34601 reprlt 34630 reprgt 34632 breprexpnat 34645 circlemethnat 34652 circlevma 34653 hgt750lema 34668 lpadlem2 34691 frlmvscadiccat 42545 fltnltalem 42701 amgm2d 44237 amgm3d 44238 amgm4d 44239 fourierdlem73 46223 grtriprop 47978 grtriclwlk3 47982 gpgorder 48096 |
| Copyright terms: Public domain | W3C validator |