Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > redwlklem | Structured version Visualization version GIF version |
Description: Lemma for redwlk 28328. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
Ref | Expression |
---|---|
redwlklem | ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . 5 ⊢ (((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃:(0...(♯‘𝐹))⟶𝑉) | |
2 | fzossfz 13512 | . . . . 5 ⊢ (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) | |
3 | fssres 6696 | . . . . 5 ⊢ ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) → (𝑃 ↾ (0..^(♯‘𝐹))):(0..^(♯‘𝐹))⟶𝑉) | |
4 | 1, 2, 3 | sylancl 587 | . . . 4 ⊢ (((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0..^(♯‘𝐹))⟶𝑉) |
5 | 4 | ex 414 | . . 3 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝑃 ↾ (0..^(♯‘𝐹))):(0..^(♯‘𝐹))⟶𝑉)) |
6 | lencl 14341 | . . . . . . . 8 ⊢ (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0) | |
7 | 6 | nn0zd 12530 | . . . . . . 7 ⊢ (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℤ) |
8 | fzoval 13494 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℤ → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1))) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ Word 𝑆 → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1))) |
10 | 9 | adantr 482 | . . . . 5 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1))) |
11 | wrdred1hash 14369 | . . . . . 6 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) | |
12 | oveq2 7350 | . . . . . . 7 ⊢ ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) = (0...((♯‘𝐹) − 1))) | |
13 | 12 | eqeq2d 2748 | . . . . . 6 ⊢ ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → ((0..^(♯‘𝐹)) = (0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) ↔ (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))) |
14 | 11, 13 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → ((0..^(♯‘𝐹)) = (0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) ↔ (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))) |
15 | 10, 14 | mpbird 257 | . . . 4 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (0..^(♯‘𝐹)) = (0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))) |
16 | 15 | feq2d 6642 | . . 3 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → ((𝑃 ↾ (0..^(♯‘𝐹))):(0..^(♯‘𝐹))⟶𝑉 ↔ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉)) |
17 | 5, 16 | sylibd 238 | . 2 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉)) |
18 | 17 | 3impia 1117 | 1 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3902 class class class wbr 5097 ↾ cres 5627 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 0cc0 10977 1c1 10978 ≤ cle 11116 − cmin 11311 ℤcz 12425 ...cfz 13345 ..^cfzo 13488 ♯chash 14150 Word cword 14322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-fzo 13489 df-hash 14151 df-word 14323 |
This theorem is referenced by: redwlk 28328 |
Copyright terms: Public domain | W3C validator |