MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matbas2d Structured version   Visualization version   GIF version

Theorem matbas2d 22145
Description: The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018.)
Hypotheses
Ref Expression
matbas2.a 𝐴 = (𝑁 Mat 𝑅)
matbas2.k 𝐾 = (Base‘𝑅)
matbas2i.b 𝐵 = (Base‘𝐴)
matbas2d.n (𝜑𝑁 ∈ Fin)
matbas2d.r (𝜑𝑅𝑉)
matbas2d.c ((𝜑𝑥𝑁𝑦𝑁) → 𝐶𝐾)
Assertion
Ref Expression
matbas2d (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝑁,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem matbas2d
StepHypRef Expression
1 matbas2d.c . . . . 5 ((𝜑𝑥𝑁𝑦𝑁) → 𝐶𝐾)
213expb 1118 . . . 4 ((𝜑 ∧ (𝑥𝑁𝑦𝑁)) → 𝐶𝐾)
32ralrimivva 3198 . . 3 (𝜑 → ∀𝑥𝑁𝑦𝑁 𝐶𝐾)
4 eqid 2730 . . . 4 (𝑥𝑁, 𝑦𝑁𝐶) = (𝑥𝑁, 𝑦𝑁𝐶)
54fmpo 8056 . . 3 (∀𝑥𝑁𝑦𝑁 𝐶𝐾 ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾)
63, 5sylib 217 . 2 (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾)
7 matbas2i.b . . . . 5 𝐵 = (Base‘𝐴)
8 matbas2d.n . . . . . 6 (𝜑𝑁 ∈ Fin)
9 matbas2d.r . . . . . 6 (𝜑𝑅𝑉)
10 matbas2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
11 matbas2.k . . . . . . 7 𝐾 = (Base‘𝑅)
1210, 11matbas2 22143 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝐾m (𝑁 × 𝑁)) = (Base‘𝐴))
138, 9, 12syl2anc 582 . . . . 5 (𝜑 → (𝐾m (𝑁 × 𝑁)) = (Base‘𝐴))
147, 13eqtr4id 2789 . . . 4 (𝜑𝐵 = (𝐾m (𝑁 × 𝑁)))
1514eleq2d 2817 . . 3 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵 ↔ (𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾m (𝑁 × 𝑁))))
1611fvexi 6904 . . . 4 𝐾 ∈ V
178, 8xpexd 7740 . . . 4 (𝜑 → (𝑁 × 𝑁) ∈ V)
18 elmapg 8835 . . . 4 ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾m (𝑁 × 𝑁)) ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
1916, 17, 18sylancr 585 . . 3 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾m (𝑁 × 𝑁)) ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
2015, 19bitrd 278 . 2 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵 ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
216, 20mpbird 256 1 (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472   × cxp 5673  wf 6538  cfv 6542  (class class class)co 7411  cmpo 7413  m cmap 8822  Fincfn 8941  Basecbs 17148   Mat cmat 22127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-hom 17225  df-cco 17226  df-0g 17391  df-prds 17397  df-pws 17399  df-sra 20930  df-rgmod 20931  df-dsmm 21506  df-frlm 21521  df-mat 22128
This theorem is referenced by:  mpomatmul  22168  dmatmulcl  22222  scmatscmiddistr  22230  marrepcl  22286  marepvcl  22291  submabas  22300  mdetrsca2  22326  mdetr0  22327  mdetrlin2  22329  mdetralt2  22331  mdetero  22332  mdetunilem2  22335  mdetunilem5  22338  mdetunilem6  22339  maduf  22363  madutpos  22364  marep01ma  22382  mat2pmatbas  22448  mat2pmatghm  22452  cpm2mf  22474  m2cpminvid  22475  m2cpminvid2  22477  m2cpmfo  22478  decpmatcl  22489  decpmatmul  22494  pmatcollpw1  22498  pmatcollpw2  22500  monmatcollpw  22501  pmatcollpwlem  22502  pmatcollpw  22503  pmatcollpw3lem  22505  pmatcollpwscmatlem2  22512  pm2mpf1  22521  mply1topmatcl  22527  mp2pm2mplem2  22529  mp2pm2mplem4  22531  pm2mpghm  22538  lmatcl  33094  mdetpmtr1  33101  mdetpmtr2  33102  mdetpmtr12  33103  madjusmdetlem1  33105  madjusmdetlem3  33107
  Copyright terms: Public domain W3C validator