![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matbas2d | Structured version Visualization version GIF version |
Description: The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
Ref | Expression |
---|---|
matbas2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matbas2.k | ⊢ 𝐾 = (Base‘𝑅) |
matbas2i.b | ⊢ 𝐵 = (Base‘𝐴) |
matbas2d.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
matbas2d.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
matbas2d.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
matbas2d | ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matbas2d.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝐶 ∈ 𝐾) | |
2 | 1 | 3expb 1113 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 𝐶 ∈ 𝐾) |
3 | 2 | ralrimivva 3160 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 𝐶 ∈ 𝐾) |
4 | eqid 2797 | . . . 4 ⊢ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) | |
5 | 4 | fmpo 7629 | . . 3 ⊢ (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 𝐶 ∈ 𝐾 ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾) |
6 | 3, 5 | sylib 219 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾) |
7 | matbas2d.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
8 | matbas2d.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
9 | matbas2.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
10 | matbas2.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
11 | 9, 10 | matbas2 20718 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝐾 ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
12 | 7, 8, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐾 ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
13 | matbas2i.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
14 | 12, 13 | syl6reqr 2852 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 (𝑁 × 𝑁))) |
15 | 14 | eleq2d 2870 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵 ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)))) |
16 | 10 | fvexi 6559 | . . . 4 ⊢ 𝐾 ∈ V |
17 | 7, 7 | xpexd 7338 | . . . 4 ⊢ (𝜑 → (𝑁 × 𝑁) ∈ V) |
18 | elmapg 8276 | . . . 4 ⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾)) | |
19 | 16, 17, 18 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾)) |
20 | 15, 19 | bitrd 280 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵 ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾)) |
21 | 6, 20 | mpbird 258 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∀wral 3107 Vcvv 3440 × cxp 5448 ⟶wf 6228 ‘cfv 6232 (class class class)co 7023 ∈ cmpo 7025 ↑𝑚 cmap 8263 Fincfn 8364 Basecbs 16316 Mat cmat 20704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-ot 4487 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-map 8265 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-sup 8759 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-fz 12747 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-hom 16422 df-cco 16423 df-0g 16548 df-prds 16554 df-pws 16556 df-sra 19638 df-rgmod 19639 df-dsmm 20562 df-frlm 20577 df-mat 20705 |
This theorem is referenced by: mpomatmul 20743 dmatmulcl 20797 scmatscmiddistr 20805 marrepcl 20861 marepvcl 20866 submabas 20875 mdetrsca2 20901 mdetr0 20902 mdetrlin2 20904 mdetralt2 20906 mdetero 20907 mdetunilem2 20910 mdetunilem5 20913 mdetunilem6 20914 maduf 20938 madutpos 20939 marep01ma 20957 mat2pmatbas 21022 mat2pmatghm 21026 cpm2mf 21048 m2cpminvid 21049 m2cpminvid2 21051 m2cpmfo 21052 decpmatcl 21063 decpmatmul 21068 pmatcollpw1 21072 pmatcollpw2 21074 monmatcollpw 21075 pmatcollpwlem 21076 pmatcollpw 21077 pmatcollpw3lem 21079 pmatcollpwscmatlem2 21086 pm2mpf1 21095 mply1topmatcl 21101 mp2pm2mplem2 21103 mp2pm2mplem4 21105 pm2mpghm 21112 lmatcl 30692 mdetpmtr1 30699 mdetpmtr2 30700 mdetpmtr12 30701 madjusmdetlem1 30703 madjusmdetlem3 30705 |
Copyright terms: Public domain | W3C validator |