Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matbas2d | Structured version Visualization version GIF version |
Description: The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
Ref | Expression |
---|---|
matbas2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matbas2.k | ⊢ 𝐾 = (Base‘𝑅) |
matbas2i.b | ⊢ 𝐵 = (Base‘𝐴) |
matbas2d.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
matbas2d.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
matbas2d.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
matbas2d | ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matbas2d.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝐶 ∈ 𝐾) | |
2 | 1 | 3expb 1117 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 𝐶 ∈ 𝐾) |
3 | 2 | ralrimivva 3120 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 𝐶 ∈ 𝐾) |
4 | eqid 2758 | . . . 4 ⊢ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) | |
5 | 4 | fmpo 7770 | . . 3 ⊢ (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 𝐶 ∈ 𝐾 ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾) |
6 | 3, 5 | sylib 221 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾) |
7 | matbas2i.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
8 | matbas2d.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
9 | matbas2d.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
10 | matbas2.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
11 | matbas2.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
12 | 10, 11 | matbas2 21121 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
13 | 8, 9, 12 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
14 | 7, 13 | eqtr4id 2812 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m (𝑁 × 𝑁))) |
15 | 14 | eleq2d 2837 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵 ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ (𝐾 ↑m (𝑁 × 𝑁)))) |
16 | 11 | fvexi 6672 | . . . 4 ⊢ 𝐾 ∈ V |
17 | 8, 8 | xpexd 7472 | . . . 4 ⊢ (𝜑 → (𝑁 × 𝑁) ∈ V) |
18 | elmapg 8429 | . . . 4 ⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾)) | |
19 | 16, 17, 18 | sylancr 590 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾)) |
20 | 15, 19 | bitrd 282 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵 ↔ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶):(𝑁 × 𝑁)⟶𝐾)) |
21 | 6, 20 | mpbird 260 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 × cxp 5522 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 ↑m cmap 8416 Fincfn 8527 Basecbs 16541 Mat cmat 21107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-ot 4531 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-hom 16647 df-cco 16648 df-0g 16773 df-prds 16779 df-pws 16781 df-sra 20012 df-rgmod 20013 df-dsmm 20497 df-frlm 20512 df-mat 21108 |
This theorem is referenced by: mpomatmul 21146 dmatmulcl 21200 scmatscmiddistr 21208 marrepcl 21264 marepvcl 21269 submabas 21278 mdetrsca2 21304 mdetr0 21305 mdetrlin2 21307 mdetralt2 21309 mdetero 21310 mdetunilem2 21313 mdetunilem5 21316 mdetunilem6 21317 maduf 21341 madutpos 21342 marep01ma 21360 mat2pmatbas 21426 mat2pmatghm 21430 cpm2mf 21452 m2cpminvid 21453 m2cpminvid2 21455 m2cpmfo 21456 decpmatcl 21467 decpmatmul 21472 pmatcollpw1 21476 pmatcollpw2 21478 monmatcollpw 21479 pmatcollpwlem 21480 pmatcollpw 21481 pmatcollpw3lem 21483 pmatcollpwscmatlem2 21490 pm2mpf1 21499 mply1topmatcl 21505 mp2pm2mplem2 21507 mp2pm2mplem4 21509 pm2mpghm 21516 lmatcl 31287 mdetpmtr1 31294 mdetpmtr2 31295 mdetpmtr12 31296 madjusmdetlem1 31298 madjusmdetlem3 31300 |
Copyright terms: Public domain | W3C validator |