Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  matbas2d Structured version   Visualization version   GIF version

Theorem matbas2d 21123
 Description: The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018.)
Hypotheses
Ref Expression
matbas2.a 𝐴 = (𝑁 Mat 𝑅)
matbas2.k 𝐾 = (Base‘𝑅)
matbas2i.b 𝐵 = (Base‘𝐴)
matbas2d.n (𝜑𝑁 ∈ Fin)
matbas2d.r (𝜑𝑅𝑉)
matbas2d.c ((𝜑𝑥𝑁𝑦𝑁) → 𝐶𝐾)
Assertion
Ref Expression
matbas2d (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝑁,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem matbas2d
StepHypRef Expression
1 matbas2d.c . . . . 5 ((𝜑𝑥𝑁𝑦𝑁) → 𝐶𝐾)
213expb 1117 . . . 4 ((𝜑 ∧ (𝑥𝑁𝑦𝑁)) → 𝐶𝐾)
32ralrimivva 3120 . . 3 (𝜑 → ∀𝑥𝑁𝑦𝑁 𝐶𝐾)
4 eqid 2758 . . . 4 (𝑥𝑁, 𝑦𝑁𝐶) = (𝑥𝑁, 𝑦𝑁𝐶)
54fmpo 7770 . . 3 (∀𝑥𝑁𝑦𝑁 𝐶𝐾 ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾)
63, 5sylib 221 . 2 (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾)
7 matbas2i.b . . . . 5 𝐵 = (Base‘𝐴)
8 matbas2d.n . . . . . 6 (𝜑𝑁 ∈ Fin)
9 matbas2d.r . . . . . 6 (𝜑𝑅𝑉)
10 matbas2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
11 matbas2.k . . . . . . 7 𝐾 = (Base‘𝑅)
1210, 11matbas2 21121 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝐾m (𝑁 × 𝑁)) = (Base‘𝐴))
138, 9, 12syl2anc 587 . . . . 5 (𝜑 → (𝐾m (𝑁 × 𝑁)) = (Base‘𝐴))
147, 13eqtr4id 2812 . . . 4 (𝜑𝐵 = (𝐾m (𝑁 × 𝑁)))
1514eleq2d 2837 . . 3 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵 ↔ (𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾m (𝑁 × 𝑁))))
1611fvexi 6672 . . . 4 𝐾 ∈ V
178, 8xpexd 7472 . . . 4 (𝜑 → (𝑁 × 𝑁) ∈ V)
18 elmapg 8429 . . . 4 ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾m (𝑁 × 𝑁)) ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
1916, 17, 18sylancr 590 . . 3 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ (𝐾m (𝑁 × 𝑁)) ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
2015, 19bitrd 282 . 2 (𝜑 → ((𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵 ↔ (𝑥𝑁, 𝑦𝑁𝐶):(𝑁 × 𝑁)⟶𝐾))
216, 20mpbird 260 1 (𝜑 → (𝑥𝑁, 𝑦𝑁𝐶) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409   × cxp 5522  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150   ∈ cmpo 7152   ↑m cmap 8416  Fincfn 8527  Basecbs 16541   Mat cmat 21107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-ot 4531  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-hom 16647  df-cco 16648  df-0g 16773  df-prds 16779  df-pws 16781  df-sra 20012  df-rgmod 20013  df-dsmm 20497  df-frlm 20512  df-mat 21108 This theorem is referenced by:  mpomatmul  21146  dmatmulcl  21200  scmatscmiddistr  21208  marrepcl  21264  marepvcl  21269  submabas  21278  mdetrsca2  21304  mdetr0  21305  mdetrlin2  21307  mdetralt2  21309  mdetero  21310  mdetunilem2  21313  mdetunilem5  21316  mdetunilem6  21317  maduf  21341  madutpos  21342  marep01ma  21360  mat2pmatbas  21426  mat2pmatghm  21430  cpm2mf  21452  m2cpminvid  21453  m2cpminvid2  21455  m2cpmfo  21456  decpmatcl  21467  decpmatmul  21472  pmatcollpw1  21476  pmatcollpw2  21478  monmatcollpw  21479  pmatcollpwlem  21480  pmatcollpw  21481  pmatcollpw3lem  21483  pmatcollpwscmatlem2  21490  pm2mpf1  21499  mply1topmatcl  21505  mp2pm2mplem2  21507  mp2pm2mplem4  21509  pm2mpghm  21516  lmatcl  31287  mdetpmtr1  31294  mdetpmtr2  31295  mdetpmtr12  31296  madjusmdetlem1  31298  madjusmdetlem3  31300
 Copyright terms: Public domain W3C validator