![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolicc | Structured version Visualization version GIF version |
Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
ovolicc | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssre 13346 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) ⊆ ℝ) |
3 | ovolcl 24842 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*) |
5 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) | |
6 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) | |
7 | 5, 6 | resubcld 11583 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ) |
8 | 7 | rexrd 11205 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ*) |
9 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
10 | eqeq1 2740 | . . . . 5 ⊢ (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1)) | |
11 | 10 | ifbid 4509 | . . . 4 ⊢ (𝑚 = 𝑛 → if(𝑚 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) = if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
12 | 11 | cbvmptv 5218 | . . 3 ⊢ (𝑚 ∈ ℕ ↦ if(𝑚 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
13 | 6, 5, 9, 12 | ovolicc1 24880 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵 − 𝐴)) |
14 | eqeq1 2740 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) | |
15 | 14 | anbi2d 629 | . . . . 5 ⊢ (𝑧 = 𝑦 → (((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
16 | 15 | rexbidv 3175 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
17 | 16 | cbvrabv 3417 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
18 | 6, 5, 9, 17 | ovolicc2 24886 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ≤ (vol*‘(𝐴[,]𝐵))) |
19 | 4, 8, 13, 18 | xrletrid 13074 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 {crab 3407 ∩ cin 3909 ⊆ wss 3910 ifcif 4486 〈cop 4592 ∪ cuni 4865 class class class wbr 5105 ↦ cmpt 5188 × cxp 5631 ran crn 5634 ∘ ccom 5637 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 supcsup 9376 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 − cmin 11385 ℕcn 12153 (,)cioo 13264 [,]cicc 13267 seqcseq 13906 abscabs 15119 vol*covol 24826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 df-rest 17304 df-topgen 17325 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-top 22243 df-topon 22260 df-bases 22296 df-cmp 22738 df-ovol 24828 |
This theorem is referenced by: ovolicopnf 24888 iccvolcl 24931 ovolioo 24932 dyadovol 24957 volcn 24970 vitalilem4 24975 vitalilem5 24976 ftc1a 25401 areacirc 36171 arearect 41535 areaquad 41536 volicc 44229 |
Copyright terms: Public domain | W3C validator |