| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolicc | Structured version Visualization version GIF version | ||
| Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| ovolicc | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre 13416 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) ⊆ ℝ) |
| 3 | ovolcl 25406 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*) |
| 5 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) | |
| 6 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) | |
| 7 | 5, 6 | resubcld 11632 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ) |
| 8 | 7 | rexrd 11250 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ*) |
| 9 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 10 | eqeq1 2734 | . . . . 5 ⊢ (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1)) | |
| 11 | 10 | ifbid 4520 | . . . 4 ⊢ (𝑚 = 𝑛 → if(𝑚 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) = if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
| 12 | 11 | cbvmptv 5219 | . . 3 ⊢ (𝑚 ∈ ℕ ↦ if(𝑚 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
| 13 | 6, 5, 9, 12 | ovolicc1 25444 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵 − 𝐴)) |
| 14 | eqeq1 2734 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) | |
| 15 | 14 | anbi2d 630 | . . . . 5 ⊢ (𝑧 = 𝑦 → (((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 16 | 15 | rexbidv 3159 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 17 | 16 | cbvrabv 3422 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| 18 | 6, 5, 9, 17 | ovolicc2 25450 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ≤ (vol*‘(𝐴[,]𝐵))) |
| 19 | 4, 8, 13, 18 | xrletrid 13141 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3055 {crab 3411 ∩ cin 3921 ⊆ wss 3922 ifcif 4496 〈cop 4603 ∪ cuni 4879 class class class wbr 5115 ↦ cmpt 5196 × cxp 5644 ran crn 5647 ∘ ccom 5650 ‘cfv 6519 (class class class)co 7395 ↑m cmap 8811 supcsup 9417 ℝcr 11093 0cc0 11094 1c1 11095 + caddc 11097 ℝ*cxr 11233 < clt 11234 ≤ cle 11235 − cmin 11431 ℕcn 12207 (,)cioo 13332 [,]cicc 13335 seqcseq 13992 abscabs 15226 vol*covol 25390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7719 ax-inf2 9620 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 ax-pre-sup 11172 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7352 df-ov 7398 df-oprab 7399 df-mpo 7400 df-om 7852 df-1st 7978 df-2nd 7979 df-frecs 8270 df-wrecs 8301 df-recs 8350 df-rdg 8388 df-1o 8444 df-er 8683 df-map 8813 df-en 8931 df-dom 8932 df-sdom 8933 df-fin 8934 df-fi 9388 df-sup 9419 df-inf 9420 df-oi 9489 df-card 9918 df-pnf 11236 df-mnf 11237 df-xr 11238 df-ltxr 11239 df-le 11240 df-sub 11433 df-neg 11434 df-div 11862 df-nn 12208 df-2 12270 df-3 12271 df-n0 12469 df-z 12556 df-uz 12820 df-q 12934 df-rp 12978 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13336 df-ico 13338 df-icc 13339 df-fz 13495 df-fzo 13642 df-seq 13993 df-exp 14053 df-hash 14322 df-cj 15091 df-re 15092 df-im 15093 df-sqrt 15227 df-abs 15228 df-clim 15480 df-sum 15679 df-rest 17411 df-topgen 17432 df-psmet 21282 df-xmet 21283 df-met 21284 df-bl 21285 df-mopn 21286 df-top 22807 df-topon 22824 df-bases 22859 df-cmp 23300 df-ovol 25392 |
| This theorem is referenced by: ovolicopnf 25452 iccvolcl 25495 ovolioo 25496 dyadovol 25521 volcn 25534 vitalilem4 25539 vitalilem5 25540 ftc1a 25971 areacirc 37723 arearect 43218 areaquad 43219 volicc 46010 |
| Copyright terms: Public domain | W3C validator |