Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovolicc | Structured version Visualization version GIF version |
Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
ovolicc | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssre 13161 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
2 | 1 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) ⊆ ℝ) |
3 | ovolcl 24642 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*) |
5 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) | |
6 | simp1 1135 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) | |
7 | 5, 6 | resubcld 11403 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ) |
8 | 7 | rexrd 11025 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ*) |
9 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
10 | eqeq1 2742 | . . . . 5 ⊢ (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1)) | |
11 | 10 | ifbid 4482 | . . . 4 ⊢ (𝑚 = 𝑛 → if(𝑚 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉) = if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
12 | 11 | cbvmptv 5187 | . . 3 ⊢ (𝑚 ∈ ℕ ↦ if(𝑚 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) |
13 | 6, 5, 9, 12 | ovolicc1 24680 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵 − 𝐴)) |
14 | eqeq1 2742 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) | |
15 | 14 | anbi2d 629 | . . . . 5 ⊢ (𝑧 = 𝑦 → (((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
16 | 15 | rexbidv 3226 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
17 | 16 | cbvrabv 3426 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
18 | 6, 5, 9, 17 | ovolicc2 24686 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ≤ (vol*‘(𝐴[,]𝐵))) |
19 | 4, 8, 13, 18 | xrletrid 12889 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 ∩ cin 3886 ⊆ wss 3887 ifcif 4459 〈cop 4567 ∪ cuni 4839 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 ran crn 5590 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 supcsup 9199 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 ℕcn 11973 (,)cioo 13079 [,]cicc 13082 seqcseq 13721 abscabs 14945 vol*covol 24626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cmp 22538 df-ovol 24628 |
This theorem is referenced by: ovolicopnf 24688 iccvolcl 24731 ovolioo 24732 dyadovol 24757 volcn 24770 vitalilem4 24775 vitalilem5 24776 ftc1a 25201 areacirc 35870 arearect 41046 areaquad 41047 volicc 43539 |
Copyright terms: Public domain | W3C validator |