Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfgelimsupuz | Structured version Visualization version GIF version |
Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfgelimsupuz.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminfgelimsupuz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminfgelimsupuz.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
liminfgelimsupuz | ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfgelimsupuz.3 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
2 | liminfgelimsupuz.2 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | fvexi 6770 | . . . . . . 7 ⊢ 𝑍 ∈ V |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ V) |
5 | 1, 4 | fexd 7085 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | 5 | liminfcld 43201 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ∈ ℝ*) |
8 | 5 | limsupcld 43121 | . . . 4 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ*) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*) |
10 | liminfgelimsupuz.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
11 | 10, 2, 1 | liminflelimsupuz 43216 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
13 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) | |
14 | 7, 9, 12, 13 | xrletrid 12818 | . 2 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
15 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*) |
16 | id 22 | . . . . 5 ⊢ ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim inf‘𝐹) = (lim sup‘𝐹)) | |
17 | 16 | eqcomd 2744 | . . . 4 ⊢ ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
18 | 17 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
19 | 15, 18 | xreqled 42759 | . 2 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
20 | 14, 19 | impbida 797 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 ℝ*cxr 10939 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 lim supclsp 15107 lim infclsi 43182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-ioo 13012 df-ico 13014 df-fl 13440 df-ceil 13441 df-limsup 15108 df-liminf 43183 |
This theorem is referenced by: climliminflimsup2 43240 climliminflimsup3 43241 climliminflimsup4 43242 xlimlimsupleliminf 43294 |
Copyright terms: Public domain | W3C validator |