Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfgelimsupuz Structured version   Visualization version   GIF version

Theorem liminfgelimsupuz 43283
Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfgelimsupuz.1 (𝜑𝑀 ∈ ℤ)
liminfgelimsupuz.2 𝑍 = (ℤ𝑀)
liminfgelimsupuz.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminfgelimsupuz (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))

Proof of Theorem liminfgelimsupuz
StepHypRef Expression
1 liminfgelimsupuz.3 . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
2 liminfgelimsupuz.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
32fvexi 6782 . . . . . . 7 𝑍 ∈ V
43a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
51, 4fexd 7097 . . . . 5 (𝜑𝐹 ∈ V)
65liminfcld 43265 . . . 4 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
76adantr 480 . . 3 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ∈ ℝ*)
85limsupcld 43185 . . . 4 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
98adantr 480 . . 3 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*)
10 liminfgelimsupuz.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
1110, 2, 1liminflelimsupuz 43280 . . . 4 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
1211adantr 480 . . 3 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
13 simpr 484 . . 3 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
147, 9, 12, 13xrletrid 12871 . 2 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹))
158adantr 480 . . 3 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*)
16 id 22 . . . . 5 ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim inf‘𝐹) = (lim sup‘𝐹))
1716eqcomd 2745 . . . 4 ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim sup‘𝐹) = (lim inf‘𝐹))
1817adantl 481 . . 3 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) = (lim inf‘𝐹))
1915, 18xreqled 42823 . 2 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
2014, 19impbida 797 1 (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  Vcvv 3430   class class class wbr 5078  wf 6426  cfv 6430  *cxr 10992  cle 10994  cz 12302  cuz 12564  lim supclsp 15160  lim infclsi 43246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-ioo 13065  df-ico 13067  df-fl 13493  df-ceil 13494  df-limsup 15161  df-liminf 43247
This theorem is referenced by:  climliminflimsup2  43304  climliminflimsup3  43305  climliminflimsup4  43306  xlimlimsupleliminf  43358
  Copyright terms: Public domain W3C validator