ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem19 GIF version

Theorem 4sqlem19 12605
Description: Lemma for 4sq 12606. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 12604. If 𝑘 is 0, 1, 2, we show 𝑘𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 12590 𝑘𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem19 0 = 𝑆
Distinct variable groups:   𝑆,𝑛   𝑤,𝑛,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem19
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9270 . . . 4 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2 eleq1 2259 . . . . . 6 (𝑗 = 1 → (𝑗𝑆 ↔ 1 ∈ 𝑆))
3 eleq1 2259 . . . . . 6 (𝑗 = 𝑚 → (𝑗𝑆𝑚𝑆))
4 eleq1 2259 . . . . . 6 (𝑗 = 𝑖 → (𝑗𝑆𝑖𝑆))
5 eleq1 2259 . . . . . 6 (𝑗 = (𝑚 · 𝑖) → (𝑗𝑆 ↔ (𝑚 · 𝑖) ∈ 𝑆))
6 eleq1 2259 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝑘𝑆))
7 abs1 11256 . . . . . . . . . . 11 (abs‘1) = 1
87oveq1i 5935 . . . . . . . . . 10 ((abs‘1)↑2) = (1↑2)
9 sq1 10744 . . . . . . . . . 10 (1↑2) = 1
108, 9eqtri 2217 . . . . . . . . 9 ((abs‘1)↑2) = 1
11 abs0 11242 . . . . . . . . . . 11 (abs‘0) = 0
1211oveq1i 5935 . . . . . . . . . 10 ((abs‘0)↑2) = (0↑2)
13 sq0 10741 . . . . . . . . . 10 (0↑2) = 0
1412, 13eqtri 2217 . . . . . . . . 9 ((abs‘0)↑2) = 0
1510, 14oveq12i 5937 . . . . . . . 8 (((abs‘1)↑2) + ((abs‘0)↑2)) = (1 + 0)
16 1p0e1 9125 . . . . . . . 8 (1 + 0) = 1
1715, 16eqtri 2217 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) = 1
18 1z 9371 . . . . . . . . 9 1 ∈ ℤ
19 zgz 12569 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . 8 1 ∈ ℤ[i]
21 0z 9356 . . . . . . . . 9 0 ∈ ℤ
22 zgz 12569 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℤ[i])
2321, 22ax-mp 5 . . . . . . . 8 0 ∈ ℤ[i]
24 4sqlem11.1 . . . . . . . . 9 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
25244sqlem4a 12587 . . . . . . . 8 ((1 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
2620, 23, 25mp2an 426 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆
2717, 26eqeltrri 2270 . . . . . 6 1 ∈ 𝑆
2810, 10oveq12i 5937 . . . . . . . . . 10 (((abs‘1)↑2) + ((abs‘1)↑2)) = (1 + 1)
29 df-2 9068 . . . . . . . . . 10 2 = (1 + 1)
3028, 29eqtr4i 2220 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) = 2
31244sqlem4a 12587 . . . . . . . . . 10 ((1 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
3220, 20, 31mp2an 426 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆
3330, 32eqeltrri 2270 . . . . . . . 8 2 ∈ 𝑆
34 eleq1 2259 . . . . . . . . 9 (𝑗 = 2 → (𝑗𝑆 ↔ 2 ∈ 𝑆))
3534adantl 277 . . . . . . . 8 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 = 2) → (𝑗𝑆 ↔ 2 ∈ 𝑆))
3633, 35mpbiri 168 . . . . . . 7 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 = 2) → 𝑗𝑆)
37 eldifsn 3750 . . . . . . . . 9 (𝑗 ∈ (ℙ ∖ {2}) ↔ (𝑗 ∈ ℙ ∧ 𝑗 ≠ 2))
38 oddprm 12455 . . . . . . . . . . 11 (𝑗 ∈ (ℙ ∖ {2}) → ((𝑗 − 1) / 2) ∈ ℕ)
3938adantr 276 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) / 2) ∈ ℕ)
40 eldifi 3286 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℙ ∖ {2}) → 𝑗 ∈ ℙ)
4140adantr 276 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℙ)
42 prmnn 12305 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
43 nncn 9017 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
4441, 42, 433syl 17 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℂ)
45 ax-1cn 7991 . . . . . . . . . . . . . 14 1 ∈ ℂ
46 subcl 8244 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 − 1) ∈ ℂ)
4744, 45, 46sylancl 413 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℂ)
48 2cnd 9082 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ∈ ℂ)
49 2ap0 9102 . . . . . . . . . . . . . 14 2 # 0
5049a1i 9 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 # 0)
5147, 48, 50divcanap2d 8838 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (2 · ((𝑗 − 1) / 2)) = (𝑗 − 1))
5251oveq1d 5940 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((2 · ((𝑗 − 1) / 2)) + 1) = ((𝑗 − 1) + 1))
53 npcan 8254 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 − 1) + 1) = 𝑗)
5444, 45, 53sylancl 413 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) + 1) = 𝑗)
5552, 54eqtr2d 2230 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 = ((2 · ((𝑗 − 1) / 2)) + 1))
5651oveq2d 5941 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = (0...(𝑗 − 1)))
57 nnm1nn0 9309 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
5841, 42, 573syl 17 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℕ0)
59 elnn0uz 9658 . . . . . . . . . . . . . 14 ((𝑗 − 1) ∈ ℕ0 ↔ (𝑗 − 1) ∈ (ℤ‘0))
6058, 59sylib 122 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ (ℤ‘0))
61 eluzfz1 10125 . . . . . . . . . . . . 13 ((𝑗 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑗 − 1)))
62 fzsplit 10145 . . . . . . . . . . . . 13 (0 ∈ (0...(𝑗 − 1)) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
6360, 61, 623syl 17 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
6456, 63eqtrd 2229 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
65 fz0sn 10215 . . . . . . . . . . . . . 14 (0...0) = {0}
6614, 14oveq12i 5937 . . . . . . . . . . . . . . . . 17 (((abs‘0)↑2) + ((abs‘0)↑2)) = (0 + 0)
67 00id 8186 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
6866, 67eqtri 2217 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) = 0
69244sqlem4a 12587 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
7023, 23, 69mp2an 426 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆
7168, 70eqeltrri 2270 . . . . . . . . . . . . . . 15 0 ∈ 𝑆
72 snssi 3767 . . . . . . . . . . . . . . 15 (0 ∈ 𝑆 → {0} ⊆ 𝑆)
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ 𝑆
7465, 73eqsstri 3216 . . . . . . . . . . . . 13 (0...0) ⊆ 𝑆
7574a1i 9 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...0) ⊆ 𝑆)
76 0p1e1 9123 . . . . . . . . . . . . . 14 (0 + 1) = 1
7776oveq1i 5935 . . . . . . . . . . . . 13 ((0 + 1)...(𝑗 − 1)) = (1...(𝑗 − 1))
78 simpr 110 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
79 dfss3 3173 . . . . . . . . . . . . . 14 ((1...(𝑗 − 1)) ⊆ 𝑆 ↔ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
8078, 79sylibr 134 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (1...(𝑗 − 1)) ⊆ 𝑆)
8177, 80eqsstrid 3230 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0 + 1)...(𝑗 − 1)) ⊆ 𝑆)
8275, 81unssd 3340 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0...0) ∪ ((0 + 1)...(𝑗 − 1))) ⊆ 𝑆)
8364, 82eqsstrd 3220 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) ⊆ 𝑆)
84 oveq1 5932 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 · 𝑗) = (𝑖 · 𝑗))
8584eleq1d 2265 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝑘 · 𝑗) ∈ 𝑆 ↔ (𝑖 · 𝑗) ∈ 𝑆))
8685cbvrabv 2762 . . . . . . . . . 10 {𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆} = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑗) ∈ 𝑆}
87 eqid 2196 . . . . . . . . . 10 inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < ) = inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < )
8824, 39, 55, 41, 83, 86, 874sqlem18 12604 . . . . . . . . 9 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
8937, 88sylanbr 285 . . . . . . . 8 (((𝑗 ∈ ℙ ∧ 𝑗 ≠ 2) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
9089an32s 568 . . . . . . 7 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 ≠ 2) → 𝑗𝑆)
91 prmz 12306 . . . . . . . . . 10 (𝑗 ∈ ℙ → 𝑗 ∈ ℤ)
9291adantr 276 . . . . . . . . 9 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℤ)
93 2z 9373 . . . . . . . . 9 2 ∈ ℤ
94 zdceq 9420 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑗 = 2)
9592, 93, 94sylancl 413 . . . . . . . 8 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → DECID 𝑗 = 2)
96 dcne 2378 . . . . . . . 8 (DECID 𝑗 = 2 ↔ (𝑗 = 2 ∨ 𝑗 ≠ 2))
9795, 96sylib 122 . . . . . . 7 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 = 2 ∨ 𝑗 ≠ 2))
9836, 90, 97mpjaodan 799 . . . . . 6 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
9924mul4sq 12590 . . . . . . 7 ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆)
10099a1i 9 . . . . . 6 ((𝑚 ∈ (ℤ‘2) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆))
1012, 3, 4, 5, 6, 27, 98, 100prmind2 12315 . . . . 5 (𝑘 ∈ ℕ → 𝑘𝑆)
102 id 19 . . . . . 6 (𝑘 = 0 → 𝑘 = 0)
103102, 71eqeltrdi 2287 . . . . 5 (𝑘 = 0 → 𝑘𝑆)
104101, 103jaoi 717 . . . 4 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘𝑆)
1051, 104sylbi 121 . . 3 (𝑘 ∈ ℕ0𝑘𝑆)
106105ssriv 3188 . 2 0𝑆
107244sqlem1 12584 . 2 𝑆 ⊆ ℕ0
108106, 107eqssi 3200 1 0 = 𝑆
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  {cab 2182  wne 2367  wral 2475  wrex 2476  {crab 2479  cdif 3154  cun 3155  wss 3157  {csn 3623   class class class wbr 4034  cfv 5259  (class class class)co 5925  infcinf 7058  cc 7896  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903   < clt 8080  cmin 8216   # cap 8627   / cdiv 8718  cn 9009  2c2 9060  0cn0 9268  cz 9345  cuz 9620  ...cfz 10102  cexp 10649  abscabs 11181  cprime 12302  ℤ[i]cgz 12565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-gz 12566
This theorem is referenced by:  4sq  12606
  Copyright terms: Public domain W3C validator