Step | Hyp | Ref
| Expression |
1 | | elnn0 9209 |
. . . 4
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
2 | | eleq1 2252 |
. . . . . 6
⊢ (𝑗 = 1 → (𝑗 ∈ 𝑆 ↔ 1 ∈ 𝑆)) |
3 | | eleq1 2252 |
. . . . . 6
⊢ (𝑗 = 𝑚 → (𝑗 ∈ 𝑆 ↔ 𝑚 ∈ 𝑆)) |
4 | | eleq1 2252 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑗 ∈ 𝑆 ↔ 𝑖 ∈ 𝑆)) |
5 | | eleq1 2252 |
. . . . . 6
⊢ (𝑗 = (𝑚 · 𝑖) → (𝑗 ∈ 𝑆 ↔ (𝑚 · 𝑖) ∈ 𝑆)) |
6 | | eleq1 2252 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝑆 ↔ 𝑘 ∈ 𝑆)) |
7 | | abs1 11116 |
. . . . . . . . . . 11
⊢
(abs‘1) = 1 |
8 | 7 | oveq1i 5907 |
. . . . . . . . . 10
⊢
((abs‘1)↑2) = (1↑2) |
9 | | sq1 10648 |
. . . . . . . . . 10
⊢
(1↑2) = 1 |
10 | 8, 9 | eqtri 2210 |
. . . . . . . . 9
⊢
((abs‘1)↑2) = 1 |
11 | | abs0 11102 |
. . . . . . . . . . 11
⊢
(abs‘0) = 0 |
12 | 11 | oveq1i 5907 |
. . . . . . . . . 10
⊢
((abs‘0)↑2) = (0↑2) |
13 | | sq0 10645 |
. . . . . . . . . 10
⊢
(0↑2) = 0 |
14 | 12, 13 | eqtri 2210 |
. . . . . . . . 9
⊢
((abs‘0)↑2) = 0 |
15 | 10, 14 | oveq12i 5909 |
. . . . . . . 8
⊢
(((abs‘1)↑2) + ((abs‘0)↑2)) = (1 +
0) |
16 | | 1p0e1 9066 |
. . . . . . . 8
⊢ (1 + 0) =
1 |
17 | 15, 16 | eqtri 2210 |
. . . . . . 7
⊢
(((abs‘1)↑2) + ((abs‘0)↑2)) = 1 |
18 | | 1z 9310 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
19 | | zgz 12408 |
. . . . . . . . 9
⊢ (1 ∈
ℤ → 1 ∈ ℤ[i]) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . 8
⊢ 1 ∈
ℤ[i] |
21 | | 0z 9295 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
22 | | zgz 12408 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → 0 ∈ ℤ[i]) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . 8
⊢ 0 ∈
ℤ[i] |
24 | | 4sqlem11.1 |
. . . . . . . . 9
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
25 | 24 | 4sqlem4a 12426 |
. . . . . . . 8
⊢ ((1
∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘1)↑2) +
((abs‘0)↑2)) ∈ 𝑆) |
26 | 20, 23, 25 | mp2an 426 |
. . . . . . 7
⊢
(((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆 |
27 | 17, 26 | eqeltrri 2263 |
. . . . . 6
⊢ 1 ∈
𝑆 |
28 | 10, 10 | oveq12i 5909 |
. . . . . . . . . 10
⊢
(((abs‘1)↑2) + ((abs‘1)↑2)) = (1 +
1) |
29 | | df-2 9009 |
. . . . . . . . . 10
⊢ 2 = (1 +
1) |
30 | 28, 29 | eqtr4i 2213 |
. . . . . . . . 9
⊢
(((abs‘1)↑2) + ((abs‘1)↑2)) = 2 |
31 | 24 | 4sqlem4a 12426 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘1)↑2) +
((abs‘1)↑2)) ∈ 𝑆) |
32 | 20, 20, 31 | mp2an 426 |
. . . . . . . . 9
⊢
(((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆 |
33 | 30, 32 | eqeltrri 2263 |
. . . . . . . 8
⊢ 2 ∈
𝑆 |
34 | | eleq1 2252 |
. . . . . . . . 9
⊢ (𝑗 = 2 → (𝑗 ∈ 𝑆 ↔ 2 ∈ 𝑆)) |
35 | 34 | adantl 277 |
. . . . . . . 8
⊢ (((𝑗 ∈ ℙ ∧
∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) ∧ 𝑗 = 2) → (𝑗 ∈ 𝑆 ↔ 2 ∈ 𝑆)) |
36 | 33, 35 | mpbiri 168 |
. . . . . . 7
⊢ (((𝑗 ∈ ℙ ∧
∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) ∧ 𝑗 = 2) → 𝑗 ∈ 𝑆) |
37 | | eldifsn 3734 |
. . . . . . . . 9
⊢ (𝑗 ∈ (ℙ ∖ {2})
↔ (𝑗 ∈ ℙ
∧ 𝑗 ≠
2)) |
38 | | oddprm 12294 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (ℙ ∖ {2})
→ ((𝑗 − 1) / 2)
∈ ℕ) |
39 | 38 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → ((𝑗 − 1) / 2) ∈
ℕ) |
40 | | eldifi 3272 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (ℙ ∖ {2})
→ 𝑗 ∈
ℙ) |
41 | 40 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → 𝑗 ∈ ℙ) |
42 | | prmnn 12145 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℙ → 𝑗 ∈
ℕ) |
43 | | nncn 8958 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
44 | 41, 42, 43 | 3syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → 𝑗 ∈ ℂ) |
45 | | ax-1cn 7935 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
46 | | subcl 8187 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑗 −
1) ∈ ℂ) |
47 | 44, 45, 46 | sylancl 413 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (𝑗 − 1) ∈ ℂ) |
48 | | 2cnd 9023 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → 2 ∈ ℂ) |
49 | | 2ap0 9043 |
. . . . . . . . . . . . . 14
⊢ 2 #
0 |
50 | 49 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → 2 # 0) |
51 | 47, 48, 50 | divcanap2d 8780 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (2 · ((𝑗 − 1) / 2)) = (𝑗 − 1)) |
52 | 51 | oveq1d 5912 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → ((2 · ((𝑗 − 1) / 2)) + 1) = ((𝑗 − 1) + 1)) |
53 | | npcan 8197 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑗 −
1) + 1) = 𝑗) |
54 | 44, 45, 53 | sylancl 413 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → ((𝑗 − 1) + 1) = 𝑗) |
55 | 52, 54 | eqtr2d 2223 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → 𝑗 = ((2 · ((𝑗 − 1) / 2)) + 1)) |
56 | 51 | oveq2d 5913 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = (0...(𝑗 − 1))) |
57 | | nnm1nn0 9248 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → (𝑗 − 1) ∈
ℕ0) |
58 | 41, 42, 57 | 3syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (𝑗 − 1) ∈
ℕ0) |
59 | | elnn0uz 9597 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 − 1) ∈
ℕ0 ↔ (𝑗 − 1) ∈
(ℤ≥‘0)) |
60 | 58, 59 | sylib 122 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (𝑗 − 1) ∈
(ℤ≥‘0)) |
61 | | eluzfz1 10063 |
. . . . . . . . . . . . 13
⊢ ((𝑗 − 1) ∈
(ℤ≥‘0) → 0 ∈ (0...(𝑗 − 1))) |
62 | | fzsplit 10083 |
. . . . . . . . . . . . 13
⊢ (0 ∈
(0...(𝑗 − 1)) →
(0...(𝑗 − 1)) =
((0...0) ∪ ((0 + 1)...(𝑗 − 1)))) |
63 | 60, 61, 62 | 3syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 +
1)...(𝑗 −
1)))) |
64 | 56, 63 | eqtrd 2222 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = ((0...0)
∪ ((0 + 1)...(𝑗 −
1)))) |
65 | | fz0sn 10153 |
. . . . . . . . . . . . . 14
⊢ (0...0) =
{0} |
66 | 14, 14 | oveq12i 5909 |
. . . . . . . . . . . . . . . . 17
⊢
(((abs‘0)↑2) + ((abs‘0)↑2)) = (0 +
0) |
67 | | 00id 8129 |
. . . . . . . . . . . . . . . . 17
⊢ (0 + 0) =
0 |
68 | 66, 67 | eqtri 2210 |
. . . . . . . . . . . . . . . 16
⊢
(((abs‘0)↑2) + ((abs‘0)↑2)) = 0 |
69 | 24 | 4sqlem4a 12426 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘0)↑2) +
((abs‘0)↑2)) ∈ 𝑆) |
70 | 23, 23, 69 | mp2an 426 |
. . . . . . . . . . . . . . . 16
⊢
(((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆 |
71 | 68, 70 | eqeltrri 2263 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
𝑆 |
72 | | snssi 3751 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
𝑆 → {0} ⊆ 𝑆) |
73 | 71, 72 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ {0}
⊆ 𝑆 |
74 | 65, 73 | eqsstri 3202 |
. . . . . . . . . . . . 13
⊢ (0...0)
⊆ 𝑆 |
75 | 74 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (0...0) ⊆ 𝑆) |
76 | | 0p1e1 9064 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
77 | 76 | oveq1i 5907 |
. . . . . . . . . . . . 13
⊢ ((0 +
1)...(𝑗 − 1)) =
(1...(𝑗 −
1)) |
78 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → ∀𝑚 ∈ (1...(𝑗 − 1))𝑚 ∈ 𝑆) |
79 | | dfss3 3160 |
. . . . . . . . . . . . . 14
⊢
((1...(𝑗 − 1))
⊆ 𝑆 ↔
∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) |
80 | 78, 79 | sylibr 134 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (1...(𝑗 − 1)) ⊆ 𝑆) |
81 | 77, 80 | eqsstrid 3216 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → ((0 + 1)...(𝑗 − 1)) ⊆ 𝑆) |
82 | 75, 81 | unssd 3326 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → ((0...0) ∪ ((0 + 1)...(𝑗 − 1))) ⊆ 𝑆) |
83 | 64, 82 | eqsstrd 3206 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (0...(2 · ((𝑗 − 1) / 2))) ⊆ 𝑆) |
84 | | oveq1 5904 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (𝑘 · 𝑗) = (𝑖 · 𝑗)) |
85 | 84 | eleq1d 2258 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → ((𝑘 · 𝑗) ∈ 𝑆 ↔ (𝑖 · 𝑗) ∈ 𝑆)) |
86 | 85 | cbvrabv 2751 |
. . . . . . . . . 10
⊢ {𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆} = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑗) ∈ 𝑆} |
87 | | eqid 2189 |
. . . . . . . . . 10
⊢
inf({𝑘 ∈
ℕ ∣ (𝑘 ·
𝑗) ∈ 𝑆}, ℝ, < ) = inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < ) |
88 | 24, 39, 55, 41, 83, 86, 87 | 4sqlem18 12443 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (ℙ ∖ {2})
∧ ∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → 𝑗 ∈ 𝑆) |
89 | 37, 88 | sylanbr 285 |
. . . . . . . 8
⊢ (((𝑗 ∈ ℙ ∧ 𝑗 ≠ 2) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚 ∈ 𝑆) → 𝑗 ∈ 𝑆) |
90 | 89 | an32s 568 |
. . . . . . 7
⊢ (((𝑗 ∈ ℙ ∧
∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) ∧ 𝑗 ≠ 2) → 𝑗 ∈ 𝑆) |
91 | | prmz 12146 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℙ → 𝑗 ∈
ℤ) |
92 | 91 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℙ ∧
∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → 𝑗 ∈ ℤ) |
93 | | 2z 9312 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
94 | | zdceq 9359 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ∧ 2 ∈
ℤ) → DECID 𝑗 = 2) |
95 | 92, 93, 94 | sylancl 413 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℙ ∧
∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → DECID 𝑗 = 2) |
96 | | dcne 2371 |
. . . . . . . 8
⊢
(DECID 𝑗 = 2 ↔ (𝑗 = 2 ∨ 𝑗 ≠ 2)) |
97 | 95, 96 | sylib 122 |
. . . . . . 7
⊢ ((𝑗 ∈ ℙ ∧
∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → (𝑗 = 2 ∨ 𝑗 ≠ 2)) |
98 | 36, 90, 97 | mpjaodan 799 |
. . . . . 6
⊢ ((𝑗 ∈ ℙ ∧
∀𝑚 ∈
(1...(𝑗 − 1))𝑚 ∈ 𝑆) → 𝑗 ∈ 𝑆) |
99 | 24 | mul4sq 12429 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝑆 ∧ 𝑖 ∈ 𝑆) → (𝑚 · 𝑖) ∈ 𝑆) |
100 | 99 | a1i 9 |
. . . . . 6
⊢ ((𝑚 ∈
(ℤ≥‘2) ∧ 𝑖 ∈ (ℤ≥‘2))
→ ((𝑚 ∈ 𝑆 ∧ 𝑖 ∈ 𝑆) → (𝑚 · 𝑖) ∈ 𝑆)) |
101 | 2, 3, 4, 5, 6, 27,
98, 100 | prmind2 12155 |
. . . . 5
⊢ (𝑘 ∈ ℕ → 𝑘 ∈ 𝑆) |
102 | | id 19 |
. . . . . 6
⊢ (𝑘 = 0 → 𝑘 = 0) |
103 | 102, 71 | eqeltrdi 2280 |
. . . . 5
⊢ (𝑘 = 0 → 𝑘 ∈ 𝑆) |
104 | 101, 103 | jaoi 717 |
. . . 4
⊢ ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘 ∈ 𝑆) |
105 | 1, 104 | sylbi 121 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈ 𝑆) |
106 | 105 | ssriv 3174 |
. 2
⊢
ℕ0 ⊆ 𝑆 |
107 | 24 | 4sqlem1 12423 |
. 2
⊢ 𝑆 ⊆
ℕ0 |
108 | 106, 107 | eqssi 3186 |
1
⊢
ℕ0 = 𝑆 |