ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem19 GIF version

Theorem 4sqlem19 12732
Description: Lemma for 4sq 12733. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 12731. If 𝑘 is 0, 1, 2, we show 𝑘𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 12717 𝑘𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem19 0 = 𝑆
Distinct variable groups:   𝑆,𝑛   𝑤,𝑛,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem19
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9297 . . . 4 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2 eleq1 2268 . . . . . 6 (𝑗 = 1 → (𝑗𝑆 ↔ 1 ∈ 𝑆))
3 eleq1 2268 . . . . . 6 (𝑗 = 𝑚 → (𝑗𝑆𝑚𝑆))
4 eleq1 2268 . . . . . 6 (𝑗 = 𝑖 → (𝑗𝑆𝑖𝑆))
5 eleq1 2268 . . . . . 6 (𝑗 = (𝑚 · 𝑖) → (𝑗𝑆 ↔ (𝑚 · 𝑖) ∈ 𝑆))
6 eleq1 2268 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝑘𝑆))
7 abs1 11383 . . . . . . . . . . 11 (abs‘1) = 1
87oveq1i 5954 . . . . . . . . . 10 ((abs‘1)↑2) = (1↑2)
9 sq1 10778 . . . . . . . . . 10 (1↑2) = 1
108, 9eqtri 2226 . . . . . . . . 9 ((abs‘1)↑2) = 1
11 abs0 11369 . . . . . . . . . . 11 (abs‘0) = 0
1211oveq1i 5954 . . . . . . . . . 10 ((abs‘0)↑2) = (0↑2)
13 sq0 10775 . . . . . . . . . 10 (0↑2) = 0
1412, 13eqtri 2226 . . . . . . . . 9 ((abs‘0)↑2) = 0
1510, 14oveq12i 5956 . . . . . . . 8 (((abs‘1)↑2) + ((abs‘0)↑2)) = (1 + 0)
16 1p0e1 9152 . . . . . . . 8 (1 + 0) = 1
1715, 16eqtri 2226 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) = 1
18 1z 9398 . . . . . . . . 9 1 ∈ ℤ
19 zgz 12696 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . 8 1 ∈ ℤ[i]
21 0z 9383 . . . . . . . . 9 0 ∈ ℤ
22 zgz 12696 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℤ[i])
2321, 22ax-mp 5 . . . . . . . 8 0 ∈ ℤ[i]
24 4sqlem11.1 . . . . . . . . 9 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
25244sqlem4a 12714 . . . . . . . 8 ((1 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
2620, 23, 25mp2an 426 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆
2717, 26eqeltrri 2279 . . . . . 6 1 ∈ 𝑆
2810, 10oveq12i 5956 . . . . . . . . . 10 (((abs‘1)↑2) + ((abs‘1)↑2)) = (1 + 1)
29 df-2 9095 . . . . . . . . . 10 2 = (1 + 1)
3028, 29eqtr4i 2229 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) = 2
31244sqlem4a 12714 . . . . . . . . . 10 ((1 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
3220, 20, 31mp2an 426 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆
3330, 32eqeltrri 2279 . . . . . . . 8 2 ∈ 𝑆
34 eleq1 2268 . . . . . . . . 9 (𝑗 = 2 → (𝑗𝑆 ↔ 2 ∈ 𝑆))
3534adantl 277 . . . . . . . 8 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 = 2) → (𝑗𝑆 ↔ 2 ∈ 𝑆))
3633, 35mpbiri 168 . . . . . . 7 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 = 2) → 𝑗𝑆)
37 eldifsn 3760 . . . . . . . . 9 (𝑗 ∈ (ℙ ∖ {2}) ↔ (𝑗 ∈ ℙ ∧ 𝑗 ≠ 2))
38 oddprm 12582 . . . . . . . . . . 11 (𝑗 ∈ (ℙ ∖ {2}) → ((𝑗 − 1) / 2) ∈ ℕ)
3938adantr 276 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) / 2) ∈ ℕ)
40 eldifi 3295 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℙ ∖ {2}) → 𝑗 ∈ ℙ)
4140adantr 276 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℙ)
42 prmnn 12432 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
43 nncn 9044 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
4441, 42, 433syl 17 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℂ)
45 ax-1cn 8018 . . . . . . . . . . . . . 14 1 ∈ ℂ
46 subcl 8271 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 − 1) ∈ ℂ)
4744, 45, 46sylancl 413 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℂ)
48 2cnd 9109 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ∈ ℂ)
49 2ap0 9129 . . . . . . . . . . . . . 14 2 # 0
5049a1i 9 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 # 0)
5147, 48, 50divcanap2d 8865 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (2 · ((𝑗 − 1) / 2)) = (𝑗 − 1))
5251oveq1d 5959 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((2 · ((𝑗 − 1) / 2)) + 1) = ((𝑗 − 1) + 1))
53 npcan 8281 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 − 1) + 1) = 𝑗)
5444, 45, 53sylancl 413 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) + 1) = 𝑗)
5552, 54eqtr2d 2239 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 = ((2 · ((𝑗 − 1) / 2)) + 1))
5651oveq2d 5960 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = (0...(𝑗 − 1)))
57 nnm1nn0 9336 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
5841, 42, 573syl 17 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℕ0)
59 elnn0uz 9686 . . . . . . . . . . . . . 14 ((𝑗 − 1) ∈ ℕ0 ↔ (𝑗 − 1) ∈ (ℤ‘0))
6058, 59sylib 122 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ (ℤ‘0))
61 eluzfz1 10153 . . . . . . . . . . . . 13 ((𝑗 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑗 − 1)))
62 fzsplit 10173 . . . . . . . . . . . . 13 (0 ∈ (0...(𝑗 − 1)) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
6360, 61, 623syl 17 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
6456, 63eqtrd 2238 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
65 fz0sn 10243 . . . . . . . . . . . . . 14 (0...0) = {0}
6614, 14oveq12i 5956 . . . . . . . . . . . . . . . . 17 (((abs‘0)↑2) + ((abs‘0)↑2)) = (0 + 0)
67 00id 8213 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
6866, 67eqtri 2226 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) = 0
69244sqlem4a 12714 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
7023, 23, 69mp2an 426 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆
7168, 70eqeltrri 2279 . . . . . . . . . . . . . . 15 0 ∈ 𝑆
72 snssi 3777 . . . . . . . . . . . . . . 15 (0 ∈ 𝑆 → {0} ⊆ 𝑆)
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ 𝑆
7465, 73eqsstri 3225 . . . . . . . . . . . . 13 (0...0) ⊆ 𝑆
7574a1i 9 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...0) ⊆ 𝑆)
76 0p1e1 9150 . . . . . . . . . . . . . 14 (0 + 1) = 1
7776oveq1i 5954 . . . . . . . . . . . . 13 ((0 + 1)...(𝑗 − 1)) = (1...(𝑗 − 1))
78 simpr 110 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
79 dfss3 3182 . . . . . . . . . . . . . 14 ((1...(𝑗 − 1)) ⊆ 𝑆 ↔ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
8078, 79sylibr 134 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (1...(𝑗 − 1)) ⊆ 𝑆)
8177, 80eqsstrid 3239 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0 + 1)...(𝑗 − 1)) ⊆ 𝑆)
8275, 81unssd 3349 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0...0) ∪ ((0 + 1)...(𝑗 − 1))) ⊆ 𝑆)
8364, 82eqsstrd 3229 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) ⊆ 𝑆)
84 oveq1 5951 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 · 𝑗) = (𝑖 · 𝑗))
8584eleq1d 2274 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝑘 · 𝑗) ∈ 𝑆 ↔ (𝑖 · 𝑗) ∈ 𝑆))
8685cbvrabv 2771 . . . . . . . . . 10 {𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆} = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑗) ∈ 𝑆}
87 eqid 2205 . . . . . . . . . 10 inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < ) = inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < )
8824, 39, 55, 41, 83, 86, 874sqlem18 12731 . . . . . . . . 9 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
8937, 88sylanbr 285 . . . . . . . 8 (((𝑗 ∈ ℙ ∧ 𝑗 ≠ 2) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
9089an32s 568 . . . . . . 7 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 ≠ 2) → 𝑗𝑆)
91 prmz 12433 . . . . . . . . . 10 (𝑗 ∈ ℙ → 𝑗 ∈ ℤ)
9291adantr 276 . . . . . . . . 9 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℤ)
93 2z 9400 . . . . . . . . 9 2 ∈ ℤ
94 zdceq 9448 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑗 = 2)
9592, 93, 94sylancl 413 . . . . . . . 8 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → DECID 𝑗 = 2)
96 dcne 2387 . . . . . . . 8 (DECID 𝑗 = 2 ↔ (𝑗 = 2 ∨ 𝑗 ≠ 2))
9795, 96sylib 122 . . . . . . 7 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 = 2 ∨ 𝑗 ≠ 2))
9836, 90, 97mpjaodan 800 . . . . . 6 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
9924mul4sq 12717 . . . . . . 7 ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆)
10099a1i 9 . . . . . 6 ((𝑚 ∈ (ℤ‘2) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆))
1012, 3, 4, 5, 6, 27, 98, 100prmind2 12442 . . . . 5 (𝑘 ∈ ℕ → 𝑘𝑆)
102 id 19 . . . . . 6 (𝑘 = 0 → 𝑘 = 0)
103102, 71eqeltrdi 2296 . . . . 5 (𝑘 = 0 → 𝑘𝑆)
104101, 103jaoi 718 . . . 4 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘𝑆)
1051, 104sylbi 121 . . 3 (𝑘 ∈ ℕ0𝑘𝑆)
106105ssriv 3197 . 2 0𝑆
107244sqlem1 12711 . 2 𝑆 ⊆ ℕ0
108106, 107eqssi 3209 1 0 = 𝑆
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2176  {cab 2191  wne 2376  wral 2484  wrex 2485  {crab 2488  cdif 3163  cun 3164  wss 3166  {csn 3633   class class class wbr 4044  cfv 5271  (class class class)co 5944  infcinf 7085  cc 7923  cr 7924  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930   < clt 8107  cmin 8243   # cap 8654   / cdiv 8745  cn 9036  2c2 9087  0cn0 9295  cz 9372  cuz 9648  ...cfz 10130  cexp 10683  abscabs 11308  cprime 12429  ℤ[i]cgz 12692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-2o 6503  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-prm 12430  df-gz 12693
This theorem is referenced by:  4sq  12733
  Copyright terms: Public domain W3C validator