Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpsqrtcld | Structured version Visualization version GIF version |
Description: The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
sqrgt0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpsqrtcld | ⊢ (𝜑 → (√‘𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrgt0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpsqrtcl 15055 | . 2 ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (√‘𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6466 ℝ+crp 12810 √csqrt 15023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-sup 9278 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-n0 12314 df-z 12400 df-uz 12663 df-rp 12811 df-seq 13802 df-exp 13863 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 |
This theorem is referenced by: sqrtgt0d 15203 prmreclem3 16696 prmreclem5 16698 cxpsqrt 25941 divsqrtsumlem 26212 bposlem7 26521 bposlem9 26523 chtppilim 26706 chpchtlim 26710 rplogsumlem1 26715 dchrisum0fno1 26742 dchrisum0lema 26745 dchrisum0lem1b 26746 dchrisum0lem1 26747 dchrisum0lem2a 26748 dchrisum0lem2 26749 dchrisum0lem3 26750 dchrisum0 26751 pntlemb 26828 pntlemh 26830 pntlemr 26833 pntlemj 26834 pntlemk 26837 minvecolem5 29379 logdivsqrle 32770 hgt750leme 32778 rrndstprj2 36061 rrncmslem 36062 rrnequiv 36065 pellexlem4 40870 pell1qrgaplem 40911 pell14qrgapw 40914 pellqrexplicit 40915 pellqrex 40917 pellfundge 40920 pellfundgt1 40921 rmspecfund 40947 rmxycomplete 40956 stirlinglem2 43866 stirlinglem4 43868 stirlinglem13 43877 stirlinglem15 43879 stirlingr 43881 qndenserrnbllem 44085 hoiqssbllem1 44411 hoiqssbllem2 44412 hoiqssbllem3 44413 |
Copyright terms: Public domain | W3C validator |