| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addmulmodb | Structured version Visualization version GIF version | ||
| Description: An integer plus a product is itself modulo a positive integer iff the product is divisible by the positive integer. (Contributed by AV, 8-Sep-2025.) |
| Ref | Expression |
|---|---|
| addmulmodb | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝑁 ∥ (𝐵 · 𝐶) ↔ ((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 2 | 1 | zcnd 12690 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∈ ℂ) |
| 4 | zmulcl 12633 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ) | |
| 5 | 4 | zcnd 12690 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ) |
| 6 | 5 | 3adant1 1130 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 · 𝐶) ∈ ℂ) |
| 8 | 3, 7 | pncan2d 11588 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 + (𝐵 · 𝐶)) − 𝐴) = (𝐵 · 𝐶)) |
| 9 | 8 | eqcomd 2740 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 · 𝐶) = ((𝐴 + (𝐵 · 𝐶)) − 𝐴)) |
| 10 | 9 | breq2d 5128 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝑁 ∥ (𝐵 · 𝐶) ↔ 𝑁 ∥ ((𝐴 + (𝐵 · 𝐶)) − 𝐴))) |
| 11 | simpl 482 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝑁 ∈ ℕ) | |
| 12 | 4 | 3adant1 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ) |
| 13 | 1, 12 | zaddcld 12693 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + (𝐵 · 𝐶)) ∈ ℤ) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 + (𝐵 · 𝐶)) ∈ ℤ) |
| 15 | 1 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∈ ℤ) |
| 16 | moddvds 16268 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 + (𝐵 · 𝐶)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 + (𝐵 · 𝐶)) − 𝐴))) | |
| 17 | 11, 14, 15, 16 | syl3anc 1372 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 + (𝐵 · 𝐶)) − 𝐴))) |
| 18 | 10, 17 | bitr4d 282 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝑁 ∥ (𝐵 · 𝐶) ↔ ((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5116 (class class class)co 7399 ℂcc 11119 + caddc 11124 · cmul 11126 − cmin 11458 ℕcn 12232 ℤcz 12580 mod cmo 13875 ∥ cdvds 16257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9448 df-inf 9449 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 df-rp 13001 df-fl 13798 df-mod 13876 df-dvds 16258 |
| This theorem is referenced by: minusmodnep2tmod 47300 |
| Copyright terms: Public domain | W3C validator |