MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addmulmodb Structured version   Visualization version   GIF version

Theorem addmulmodb 16183
Description: An integer plus a product is itself modulo a positive integer iff the product is divisible by the positive integer. (Contributed by AV, 8-Sep-2025.)
Assertion
Ref Expression
addmulmodb ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝑁 ∥ (𝐵 · 𝐶) ↔ ((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁)))

Proof of Theorem addmulmodb
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
21zcnd 12588 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
32adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∈ ℂ)
4 zmulcl 12531 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
54zcnd 12588 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
653adant1 1130 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
76adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 · 𝐶) ∈ ℂ)
83, 7pncan2d 11485 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 + (𝐵 · 𝐶)) − 𝐴) = (𝐵 · 𝐶))
98eqcomd 2739 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 · 𝐶) = ((𝐴 + (𝐵 · 𝐶)) − 𝐴))
109breq2d 5107 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝑁 ∥ (𝐵 · 𝐶) ↔ 𝑁 ∥ ((𝐴 + (𝐵 · 𝐶)) − 𝐴)))
11 simpl 482 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝑁 ∈ ℕ)
1243adant1 1130 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
131, 12zaddcld 12591 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + (𝐵 · 𝐶)) ∈ ℤ)
1413adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 + (𝐵 · 𝐶)) ∈ ℤ)
151adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∈ ℤ)
16 moddvds 16181 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 + (𝐵 · 𝐶)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 + (𝐵 · 𝐶)) − 𝐴)))
1711, 14, 15, 16syl3anc 1373 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 + (𝐵 · 𝐶)) − 𝐴)))
1810, 17bitr4d 282 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝑁 ∥ (𝐵 · 𝐶) ↔ ((𝐴 + (𝐵 · 𝐶)) mod 𝑁) = (𝐴 mod 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  (class class class)co 7355  cc 11015   + caddc 11020   · cmul 11022  cmin 11355  cn 12136  cz 12479   mod cmo 13780  cdvds 16170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fl 13703  df-mod 13781  df-dvds 16171
This theorem is referenced by:  minusmodnep2tmod  47515
  Copyright terms: Public domain W3C validator