Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minusmodnep2tmod Structured version   Visualization version   GIF version

Theorem minusmodnep2tmod 47344
Description: A nonnegative integer minus a positive integer 1 or 2 is not itself plus 2 times the positive integer modulo 5. (Contributed by AV, 8-Sep-2025.)
Assertion
Ref Expression
minusmodnep2tmod ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((𝐴𝐵) mod 5) ≠ ((𝐴 + (2 · 𝐵)) mod 5))

Proof of Theorem minusmodnep2tmod
StepHypRef Expression
1 elpri 4615 . . . . . 6 (𝐵 ∈ {1, 2} → (𝐵 = 1 ∨ 𝐵 = 2))
2 5ndvds3 16389 . . . . . . . 8 ¬ 5 ∥ 3
3 oveq2 7397 . . . . . . . . . 10 (𝐵 = 1 → (3 · 𝐵) = (3 · 1))
4 3t1e3 12352 . . . . . . . . . 10 (3 · 1) = 3
53, 4eqtrdi 2781 . . . . . . . . 9 (𝐵 = 1 → (3 · 𝐵) = 3)
65breq2d 5121 . . . . . . . 8 (𝐵 = 1 → (5 ∥ (3 · 𝐵) ↔ 5 ∥ 3))
72, 6mtbiri 327 . . . . . . 7 (𝐵 = 1 → ¬ 5 ∥ (3 · 𝐵))
8 5ndvds6 16390 . . . . . . . 8 ¬ 5 ∥ 6
9 oveq2 7397 . . . . . . . . . 10 (𝐵 = 2 → (3 · 𝐵) = (3 · 2))
10 3t2e6 12353 . . . . . . . . . 10 (3 · 2) = 6
119, 10eqtrdi 2781 . . . . . . . . 9 (𝐵 = 2 → (3 · 𝐵) = 6)
1211breq2d 5121 . . . . . . . 8 (𝐵 = 2 → (5 ∥ (3 · 𝐵) ↔ 5 ∥ 6))
138, 12mtbiri 327 . . . . . . 7 (𝐵 = 2 → ¬ 5 ∥ (3 · 𝐵))
147, 13jaoi 857 . . . . . 6 ((𝐵 = 1 ∨ 𝐵 = 2) → ¬ 5 ∥ (3 · 𝐵))
151, 14syl 17 . . . . 5 (𝐵 ∈ {1, 2} → ¬ 5 ∥ (3 · 𝐵))
16 fzo13pr 13716 . . . . 5 (1..^3) = {1, 2}
1715, 16eleq2s 2847 . . . 4 (𝐵 ∈ (1..^3) → ¬ 5 ∥ (3 · 𝐵))
1817adantl 481 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ¬ 5 ∥ (3 · 𝐵))
19 5nn 12273 . . . . . . 7 5 ∈ ℕ
2019a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 5 ∈ ℕ)
21 simpl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 𝐴 ∈ ℤ)
22 2z 12571 . . . . . . . 8 2 ∈ ℤ
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 2 ∈ ℤ)
24 elfzoelz 13626 . . . . . . . 8 (𝐵 ∈ (1..^3) → 𝐵 ∈ ℤ)
2524adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 𝐵 ∈ ℤ)
2623, 25zmulcld 12650 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (2 · 𝐵) ∈ ℤ)
27 submodaddmod 47332 . . . . . 6 ((5 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5) ↔ ((𝐴 + ((2 · 𝐵) + 𝐵)) mod 5) = (𝐴 mod 5)))
2820, 21, 26, 25, 27syl13anc 1374 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5) ↔ ((𝐴 + ((2 · 𝐵) + 𝐵)) mod 5) = (𝐴 mod 5)))
29 2cnd 12265 . . . . . . . . . . . 12 (𝐵 ∈ (1..^3) → 2 ∈ ℂ)
3024zcnd 12645 . . . . . . . . . . . 12 (𝐵 ∈ (1..^3) → 𝐵 ∈ ℂ)
3129, 30adddirp1d 11206 . . . . . . . . . . 11 (𝐵 ∈ (1..^3) → ((2 + 1) · 𝐵) = ((2 · 𝐵) + 𝐵))
3231eqcomd 2736 . . . . . . . . . 10 (𝐵 ∈ (1..^3) → ((2 · 𝐵) + 𝐵) = ((2 + 1) · 𝐵))
3332adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((2 · 𝐵) + 𝐵) = ((2 + 1) · 𝐵))
34 2p1e3 12329 . . . . . . . . . 10 (2 + 1) = 3
3534oveq1i 7399 . . . . . . . . 9 ((2 + 1) · 𝐵) = (3 · 𝐵)
3633, 35eqtrdi 2781 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((2 · 𝐵) + 𝐵) = (3 · 𝐵))
3736oveq2d 7405 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (𝐴 + ((2 · 𝐵) + 𝐵)) = (𝐴 + (3 · 𝐵)))
3837oveq1d 7404 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((𝐴 + ((2 · 𝐵) + 𝐵)) mod 5) = ((𝐴 + (3 · 𝐵)) mod 5))
3938eqeq1d 2732 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴 + ((2 · 𝐵) + 𝐵)) mod 5) = (𝐴 mod 5) ↔ ((𝐴 + (3 · 𝐵)) mod 5) = (𝐴 mod 5)))
4028, 39bitrd 279 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5) ↔ ((𝐴 + (3 · 𝐵)) mod 5) = (𝐴 mod 5)))
41 eqcom 2737 . . . . 5 (((𝐴𝐵) mod 5) = ((𝐴 + (2 · 𝐵)) mod 5) ↔ ((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5))
4241a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴𝐵) mod 5) = ((𝐴 + (2 · 𝐵)) mod 5) ↔ ((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5)))
43 3z 12572 . . . . . 6 3 ∈ ℤ
4443a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 3 ∈ ℤ)
45 addmulmodb 16241 . . . . 5 ((5 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (5 ∥ (3 · 𝐵) ↔ ((𝐴 + (3 · 𝐵)) mod 5) = (𝐴 mod 5)))
4620, 21, 44, 25, 45syl13anc 1374 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (5 ∥ (3 · 𝐵) ↔ ((𝐴 + (3 · 𝐵)) mod 5) = (𝐴 mod 5)))
4740, 42, 463bitr4d 311 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴𝐵) mod 5) = ((𝐴 + (2 · 𝐵)) mod 5) ↔ 5 ∥ (3 · 𝐵)))
4818, 47mtbird 325 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ¬ ((𝐴𝐵) mod 5) = ((𝐴 + (2 · 𝐵)) mod 5))
4948neqned 2933 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((𝐴𝐵) mod 5) ≠ ((𝐴 + (2 · 𝐵)) mod 5))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  {cpr 4593   class class class wbr 5109  (class class class)co 7389  1c1 11075   + caddc 11077   · cmul 11079  cmin 11411  cn 12187  2c2 12242  3c3 12243  5c5 12245  6c6 12246  cz 12535  ..^cfzo 13621   mod cmo 13837  cdvds 16228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-dvds 16229
This theorem is referenced by:  gpg5nbgrvtx13starlem2  48053
  Copyright terms: Public domain W3C validator