Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minusmodnep2tmod Structured version   Visualization version   GIF version

Theorem minusmodnep2tmod 47276
Description: A nonnegative integer minus a positive integer 1 or 2 is not itself plus 2 times the positive integer modulo 5. (Contributed by AV, 8-Sep-2025.)
Assertion
Ref Expression
minusmodnep2tmod ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((𝐴𝐵) mod 5) ≠ ((𝐴 + (2 · 𝐵)) mod 5))

Proof of Theorem minusmodnep2tmod
StepHypRef Expression
1 elpri 4671 . . . . . 6 (𝐵 ∈ {1, 2} → (𝐵 = 1 ∨ 𝐵 = 2))
2 5ndvds3 16479 . . . . . . . 8 ¬ 5 ∥ 3
3 oveq2 7459 . . . . . . . . . 10 (𝐵 = 1 → (3 · 𝐵) = (3 · 1))
4 3t1e3 12463 . . . . . . . . . 10 (3 · 1) = 3
53, 4eqtrdi 2796 . . . . . . . . 9 (𝐵 = 1 → (3 · 𝐵) = 3)
65breq2d 5179 . . . . . . . 8 (𝐵 = 1 → (5 ∥ (3 · 𝐵) ↔ 5 ∥ 3))
72, 6mtbiri 327 . . . . . . 7 (𝐵 = 1 → ¬ 5 ∥ (3 · 𝐵))
8 5ndvds6 16480 . . . . . . . 8 ¬ 5 ∥ 6
9 oveq2 7459 . . . . . . . . . 10 (𝐵 = 2 → (3 · 𝐵) = (3 · 2))
10 3t2e6 12464 . . . . . . . . . 10 (3 · 2) = 6
119, 10eqtrdi 2796 . . . . . . . . 9 (𝐵 = 2 → (3 · 𝐵) = 6)
1211breq2d 5179 . . . . . . . 8 (𝐵 = 2 → (5 ∥ (3 · 𝐵) ↔ 5 ∥ 6))
138, 12mtbiri 327 . . . . . . 7 (𝐵 = 2 → ¬ 5 ∥ (3 · 𝐵))
147, 13jaoi 856 . . . . . 6 ((𝐵 = 1 ∨ 𝐵 = 2) → ¬ 5 ∥ (3 · 𝐵))
151, 14syl 17 . . . . 5 (𝐵 ∈ {1, 2} → ¬ 5 ∥ (3 · 𝐵))
16 fzo13pr 13816 . . . . 5 (1..^3) = {1, 2}
1715, 16eleq2s 2862 . . . 4 (𝐵 ∈ (1..^3) → ¬ 5 ∥ (3 · 𝐵))
1817adantl 481 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ¬ 5 ∥ (3 · 𝐵))
19 5nn 12384 . . . . . . 7 5 ∈ ℕ
2019a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 5 ∈ ℕ)
21 simpl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 𝐴 ∈ ℤ)
22 2z 12681 . . . . . . . 8 2 ∈ ℤ
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 2 ∈ ℤ)
24 elfzoelz 13727 . . . . . . . 8 (𝐵 ∈ (1..^3) → 𝐵 ∈ ℤ)
2524adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 𝐵 ∈ ℤ)
2623, 25zmulcld 12760 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (2 · 𝐵) ∈ ℤ)
27 submodaddmod 47264 . . . . . 6 ((5 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5) ↔ ((𝐴 + ((2 · 𝐵) + 𝐵)) mod 5) = (𝐴 mod 5)))
2820, 21, 26, 25, 27syl13anc 1372 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5) ↔ ((𝐴 + ((2 · 𝐵) + 𝐵)) mod 5) = (𝐴 mod 5)))
29 2cnd 12376 . . . . . . . . . . . 12 (𝐵 ∈ (1..^3) → 2 ∈ ℂ)
3024zcnd 12755 . . . . . . . . . . . 12 (𝐵 ∈ (1..^3) → 𝐵 ∈ ℂ)
3129, 30adddirp1d 11319 . . . . . . . . . . 11 (𝐵 ∈ (1..^3) → ((2 + 1) · 𝐵) = ((2 · 𝐵) + 𝐵))
3231eqcomd 2746 . . . . . . . . . 10 (𝐵 ∈ (1..^3) → ((2 · 𝐵) + 𝐵) = ((2 + 1) · 𝐵))
3332adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((2 · 𝐵) + 𝐵) = ((2 + 1) · 𝐵))
34 2p1e3 12440 . . . . . . . . . 10 (2 + 1) = 3
3534oveq1i 7461 . . . . . . . . 9 ((2 + 1) · 𝐵) = (3 · 𝐵)
3633, 35eqtrdi 2796 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((2 · 𝐵) + 𝐵) = (3 · 𝐵))
3736oveq2d 7467 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (𝐴 + ((2 · 𝐵) + 𝐵)) = (𝐴 + (3 · 𝐵)))
3837oveq1d 7466 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((𝐴 + ((2 · 𝐵) + 𝐵)) mod 5) = ((𝐴 + (3 · 𝐵)) mod 5))
3938eqeq1d 2742 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴 + ((2 · 𝐵) + 𝐵)) mod 5) = (𝐴 mod 5) ↔ ((𝐴 + (3 · 𝐵)) mod 5) = (𝐴 mod 5)))
4028, 39bitrd 279 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5) ↔ ((𝐴 + (3 · 𝐵)) mod 5) = (𝐴 mod 5)))
41 eqcom 2747 . . . . 5 (((𝐴𝐵) mod 5) = ((𝐴 + (2 · 𝐵)) mod 5) ↔ ((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5))
4241a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴𝐵) mod 5) = ((𝐴 + (2 · 𝐵)) mod 5) ↔ ((𝐴 + (2 · 𝐵)) mod 5) = ((𝐴𝐵) mod 5)))
43 3z 12682 . . . . . 6 3 ∈ ℤ
4443a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → 3 ∈ ℤ)
45 addmulmodb 16332 . . . . 5 ((5 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (5 ∥ (3 · 𝐵) ↔ ((𝐴 + (3 · 𝐵)) mod 5) = (𝐴 mod 5)))
4620, 21, 44, 25, 45syl13anc 1372 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (5 ∥ (3 · 𝐵) ↔ ((𝐴 + (3 · 𝐵)) mod 5) = (𝐴 mod 5)))
4740, 42, 463bitr4d 311 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → (((𝐴𝐵) mod 5) = ((𝐴 + (2 · 𝐵)) mod 5) ↔ 5 ∥ (3 · 𝐵)))
4818, 47mtbird 325 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ¬ ((𝐴𝐵) mod 5) = ((𝐴 + (2 · 𝐵)) mod 5))
4948neqned 2953 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((𝐴𝐵) mod 5) ≠ ((𝐴 + (2 · 𝐵)) mod 5))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  {cpr 4650   class class class wbr 5167  (class class class)co 7451  1c1 11188   + caddc 11190   · cmul 11192  cmin 11524  cn 12298  2c2 12353  3c3 12354  5c5 12356  6c6 12357  cz 12645  ..^cfzo 13722   mod cmo 13936  cdvds 16319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5318  ax-nul 5325  ax-pow 5384  ax-pr 5448  ax-un 7773  ax-cnex 11243  ax-resscn 11244  ax-1cn 11245  ax-icn 11246  ax-addcl 11247  ax-addrcl 11248  ax-mulcl 11249  ax-mulrcl 11250  ax-mulcom 11251  ax-addass 11252  ax-mulass 11253  ax-distr 11254  ax-i2m1 11255  ax-1ne0 11256  ax-1rid 11257  ax-rnegex 11258  ax-rrecex 11259  ax-cnre 11260  ax-pre-lttri 11261  ax-pre-lttrn 11262  ax-pre-ltadd 11263  ax-pre-mulgt0 11264  ax-pre-sup 11265
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4933  df-iun 5018  df-br 5168  df-opab 5230  df-mpt 5251  df-tr 5285  df-id 5594  df-eprel 5600  df-po 5608  df-so 5609  df-fr 5653  df-we 5655  df-xp 5707  df-rel 5708  df-cnv 5709  df-co 5710  df-dm 5711  df-rn 5712  df-res 5713  df-ima 5714  df-pred 6335  df-ord 6401  df-on 6402  df-lim 6403  df-suc 6404  df-iota 6528  df-fun 6578  df-fn 6579  df-f 6580  df-f1 6581  df-fo 6582  df-f1o 6583  df-fv 6584  df-riota 7407  df-ov 7454  df-oprab 7455  df-mpo 7456  df-om 7907  df-1st 8033  df-2nd 8034  df-frecs 8325  df-wrecs 8356  df-recs 8430  df-rdg 8469  df-er 8766  df-en 9007  df-dom 9008  df-sdom 9009  df-sup 9514  df-inf 9515  df-pnf 11329  df-mnf 11330  df-xr 11331  df-ltxr 11332  df-le 11333  df-sub 11526  df-neg 11527  df-div 11953  df-nn 12299  df-2 12361  df-3 12362  df-4 12363  df-5 12364  df-6 12365  df-n0 12559  df-z 12646  df-uz 12911  df-rp 13067  df-fz 13579  df-fzo 13723  df-fl 13859  df-mod 13937  df-seq 14070  df-exp 14130  df-cj 15165  df-re 15166  df-im 15167  df-sqrt 15301  df-abs 15302  df-dvds 16320
This theorem is referenced by:  gpg5nbgrvtx13starlem2  47915
  Copyright terms: Public domain W3C validator