MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat2s1fvwALT Structured version   Visualization version   GIF version

Theorem ccat2s1fvwALT 14880
Description: Alternate proof of ccat2s1fvw 14563 using words of length 2, see df-s2 14773. A symbol of the concatenation of a word with two single symbols corresponding to the symbol of the word. (Contributed by AV, 22-Sep-2018.) (Proof shortened by Mario Carneiro/AV, 21-Oct-2018.) (Revised by AV, 28-Jan-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ccat2s1fvwALT ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))

Proof of Theorem ccat2s1fvwALT
StepHypRef Expression
1 ccatw2s1ccatws2 14879 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ ⟨“𝑋𝑌”⟩))
21fveq1d 6828 . . 3 (𝑊 ∈ Word 𝑉 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = ((𝑊 ++ ⟨“𝑋𝑌”⟩)‘𝐼))
323ad2ant1 1133 . 2 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = ((𝑊 ++ ⟨“𝑋𝑌”⟩)‘𝐼))
4 simp1 1136 . . 3 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
5 s2cli 14805 . . . 4 ⟨“𝑋𝑌”⟩ ∈ Word V
65a1i 11 . . 3 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → ⟨“𝑋𝑌”⟩ ∈ Word V)
7 simp2 1137 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℕ0)
8 lencl 14458 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
98nn0zd 12515 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
1093ad2ant1 1133 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
11 simp3 1138 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 < (♯‘𝑊))
12 elfzo0z 13622 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℤ ∧ 𝐼 < (♯‘𝑊)))
137, 10, 11, 12syl3anbrc 1344 . . 3 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 ∈ (0..^(♯‘𝑊)))
14 ccatval1 14502 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋𝑌”⟩ ∈ Word V ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑋𝑌”⟩)‘𝐼) = (𝑊𝐼))
154, 6, 13, 14syl3anc 1373 . 2 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋𝑌”⟩)‘𝐼) = (𝑊𝐼))
163, 15eqtrd 2764 1 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028   < clt 11168  0cn0 12402  cz 12489  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495  ⟨“cs1 14520  ⟨“cs2 14766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator