Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccat2s1fvwALT | Structured version Visualization version GIF version |
Description: Alternate proof of ccat2s1fvw 14398 using words of length 2, see df-s2 14610. A symbol of the concatenation of a word with two single symbols corresponding to the symbol of the word. (Contributed by AV, 22-Sep-2018.) (Proof shortened by Mario Carneiro/AV, 21-Oct-2018.) (Revised by AV, 28-Jan-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ccat2s1fvwALT | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatw2s1ccatws2 14716 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ 〈“𝑋𝑌”〉)) | |
2 | 1 | fveq1d 6806 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = ((𝑊 ++ 〈“𝑋𝑌”〉)‘𝐼)) |
3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = ((𝑊 ++ 〈“𝑋𝑌”〉)‘𝐼)) |
4 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
5 | s2cli 14642 | . . . 4 ⊢ 〈“𝑋𝑌”〉 ∈ Word V | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 〈“𝑋𝑌”〉 ∈ Word V) |
7 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℕ0) | |
8 | lencl 14285 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
9 | 8 | nn0zd 12474 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ) |
11 | simp3 1138 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 < (♯‘𝑊)) | |
12 | elfzo0z 13479 | . . . 4 ⊢ (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℤ ∧ 𝐼 < (♯‘𝑊))) | |
13 | 7, 10, 11, 12 | syl3anbrc 1343 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ (0..^(♯‘𝑊))) |
14 | ccatval1 14330 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 〈“𝑋𝑌”〉 ∈ Word V ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“𝑋𝑌”〉)‘𝐼) = (𝑊‘𝐼)) | |
15 | 4, 6, 13, 14 | syl3anc 1371 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → ((𝑊 ++ 〈“𝑋𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
16 | 3, 15 | eqtrd 2776 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 0cc0 10921 < clt 11059 ℕ0cn0 12283 ℤcz 12369 ..^cfzo 13432 ♯chash 14094 Word cword 14266 ++ cconcat 14322 〈“cs1 14349 〈“cs2 14603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-fzo 13433 df-hash 14095 df-word 14267 df-concat 14323 df-s1 14350 df-s2 14610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |