MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat2s1fvwALTOLD Structured version   Visualization version   GIF version

Theorem ccat2s1fvwALTOLD 14598
Description: Obsolete version of ccat2s1fvwALT 14597 as of 28-Jan-2024. Alternate proof of ccat2s1fvwOLD 14278 using words of length 2, see df-s2 14489. A symbol of the concatenation of a word with two single symbols corresponding to the symbol of the word. (Contributed by AV, 22-Sep-2018.) (Proof shortened by Mario Carneiro/AV, 21-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ccat2s1fvwALTOLD (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))

Proof of Theorem ccat2s1fvwALTOLD
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
21anim1i 614 . . . 4 (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)))
3 3anass 1093 . . . 4 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)))
42, 3sylibr 233 . . 3 (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉))
5 ccatw2s1ccatws2OLD 14596 . . . 4 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ ⟨“𝑋𝑌”⟩))
65fveq1d 6758 . . 3 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = ((𝑊 ++ ⟨“𝑋𝑌”⟩)‘𝐼))
74, 6syl 17 . 2 (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = ((𝑊 ++ ⟨“𝑋𝑌”⟩)‘𝐼))
81adantr 480 . . 3 (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ Word 𝑉)
9 s2cl 14519 . . . 4 ((𝑋𝑉𝑌𝑉) → ⟨“𝑋𝑌”⟩ ∈ Word 𝑉)
109adantl 481 . . 3 (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → ⟨“𝑋𝑌”⟩ ∈ Word 𝑉)
11 simp2 1135 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℕ0)
12 lencl 14164 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1312nn0zd 12353 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
14133ad2ant1 1131 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
15 simp3 1136 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 < (♯‘𝑊))
16 elfzo0z 13357 . . . . 5 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℤ ∧ 𝐼 < (♯‘𝑊)))
1711, 14, 15, 16syl3anbrc 1341 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 ∈ (0..^(♯‘𝑊)))
1817adantr 480 . . 3 (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → 𝐼 ∈ (0..^(♯‘𝑊)))
19 ccatval1 14209 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋𝑌”⟩ ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑋𝑌”⟩)‘𝐼) = (𝑊𝐼))
208, 10, 18, 19syl3anc 1369 . 2 (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → ((𝑊 ++ ⟨“𝑋𝑌”⟩)‘𝐼) = (𝑊𝐼))
217, 20eqtrd 2778 1 (((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802   < clt 10940  0cn0 12163  cz 12249  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  ⟨“cs2 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator