Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccat2s1fvwOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ccat2s1fvw 14277 as of 28-Jan-2024. Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ccat2s1fvwOLD | ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatw2s1assOLD 14269 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) | |
2 | 1 | 3expb 1118 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) |
3 | 2 | 3ad2antl1 1183 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) |
4 | 3 | fveq1d 6758 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼)) |
5 | simpl1 1189 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ Word 𝑉) | |
6 | ccat2s1cl 14251 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉) | |
7 | 6 | adantl 481 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉) |
8 | simp2 1135 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℕ0) | |
9 | lencl 14164 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
10 | 9 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0) |
11 | nn0ge0 12188 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℕ0 → 0 ≤ 𝐼) | |
12 | 11 | adantl 481 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ≤ 𝐼) |
13 | 0red 10909 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ) | |
14 | nn0re 12172 | . . . . . . . . . 10 ⊢ (𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ) | |
15 | 14 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ) |
16 | 9 | nn0red 12224 | . . . . . . . . . 10 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ) |
17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (♯‘𝑊) ∈ ℝ) |
18 | lelttr 10996 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 ≤ 𝐼 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))) | |
19 | 13, 15, 17, 18 | syl3anc 1369 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → ((0 ≤ 𝐼 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))) |
20 | 12, 19 | mpand 691 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (𝐼 < (♯‘𝑊) → 0 < (♯‘𝑊))) |
21 | 20 | 3impia 1115 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊)) |
22 | elnnnn0b 12207 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 0 < (♯‘𝑊))) | |
23 | 10, 21, 22 | sylanbrc 582 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ) |
24 | simp3 1136 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 < (♯‘𝑊)) | |
25 | elfzo0 13356 | . . . . 5 ⊢ (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊))) | |
26 | 8, 23, 24, 25 | syl3anbrc 1341 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ (0..^(♯‘𝑊))) |
27 | 26 | adantr 480 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐼 ∈ (0..^(♯‘𝑊))) |
28 | ccatval1 14209 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) | |
29 | 5, 7, 27, 28 | syl3anc 1369 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) |
30 | 4, 29 | eqtrd 2778 | 1 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 ℕcn 11903 ℕ0cn0 12163 ..^cfzo 13311 ♯chash 13972 Word cword 14145 ++ cconcat 14201 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 |
This theorem is referenced by: ccat2s1fstOLD 14280 |
Copyright terms: Public domain | W3C validator |