Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccat2s1fvwOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ccat2s1fvw 14349 as of 28-Jan-2024. Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ccat2s1fvwOLD | ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatw2s1assOLD 14341 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) | |
2 | 1 | 3expb 1119 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) |
3 | 2 | 3ad2antl1 1184 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) |
4 | 3 | fveq1d 6776 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼)) |
5 | simpl1 1190 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ Word 𝑉) | |
6 | ccat2s1cl 14323 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉) | |
7 | 6 | adantl 482 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉) |
8 | simp2 1136 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℕ0) | |
9 | lencl 14236 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
10 | 9 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0) |
11 | nn0ge0 12258 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℕ0 → 0 ≤ 𝐼) | |
12 | 11 | adantl 482 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ≤ 𝐼) |
13 | 0red 10978 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ) | |
14 | nn0re 12242 | . . . . . . . . . 10 ⊢ (𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ) | |
15 | 14 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ) |
16 | 9 | nn0red 12294 | . . . . . . . . . 10 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ) |
17 | 16 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (♯‘𝑊) ∈ ℝ) |
18 | lelttr 11065 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 ≤ 𝐼 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))) | |
19 | 13, 15, 17, 18 | syl3anc 1370 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → ((0 ≤ 𝐼 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))) |
20 | 12, 19 | mpand 692 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (𝐼 < (♯‘𝑊) → 0 < (♯‘𝑊))) |
21 | 20 | 3impia 1116 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊)) |
22 | elnnnn0b 12277 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 0 < (♯‘𝑊))) | |
23 | 10, 21, 22 | sylanbrc 583 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ) |
24 | simp3 1137 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 < (♯‘𝑊)) | |
25 | elfzo0 13428 | . . . . 5 ⊢ (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊))) | |
26 | 8, 23, 24, 25 | syl3anbrc 1342 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ (0..^(♯‘𝑊))) |
27 | 26 | adantr 481 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐼 ∈ (0..^(♯‘𝑊))) |
28 | ccatval1 14281 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) | |
29 | 5, 7, 27, 28 | syl3anc 1370 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) |
30 | 4, 29 | eqtrd 2778 | 1 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 < clt 11009 ≤ cle 11010 ℕcn 11973 ℕ0cn0 12233 ..^cfzo 13382 ♯chash 14044 Word cword 14217 ++ cconcat 14273 〈“cs1 14300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 |
This theorem is referenced by: ccat2s1fstOLD 14352 |
Copyright terms: Public domain | W3C validator |