Step | Hyp | Ref
| Expression |
1 | | neeq1 3003 |
. . . 4
β’ (π€ = π β (π€ β β
β π β β
)) |
2 | | fveq2 6888 |
. . . . . . 7
β’ (π€ = π β (β―βπ€) = (β―βπ)) |
3 | 2 | oveq1d 7420 |
. . . . . 6
β’ (π€ = π β ((β―βπ€) β 1) = ((β―βπ) β 1)) |
4 | 3 | oveq2d 7421 |
. . . . 5
β’ (π€ = π β (0..^((β―βπ€) β 1)) =
(0..^((β―βπ)
β 1))) |
5 | | fveq1 6887 |
. . . . . . 7
β’ (π€ = π β (π€βπ) = (πβπ)) |
6 | | fveq1 6887 |
. . . . . . 7
β’ (π€ = π β (π€β(π + 1)) = (πβ(π + 1))) |
7 | 5, 6 | preq12d 4744 |
. . . . . 6
β’ (π€ = π β {(π€βπ), (π€β(π + 1))} = {(πβπ), (πβ(π + 1))}) |
8 | 7 | eleq1d 2818 |
. . . . 5
β’ (π€ = π β ({(π€βπ), (π€β(π + 1))} β πΈ β {(πβπ), (πβ(π + 1))} β πΈ)) |
9 | 4, 8 | raleqbidv 3342 |
. . . 4
β’ (π€ = π β (βπ β (0..^((β―βπ€) β 1)){(π€βπ), (π€β(π + 1))} β πΈ β βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β πΈ)) |
10 | | fveq2 6888 |
. . . . . 6
β’ (π€ = π β (lastSβπ€) = (lastSβπ)) |
11 | | fveq1 6887 |
. . . . . 6
β’ (π€ = π β (π€β0) = (πβ0)) |
12 | 10, 11 | preq12d 4744 |
. . . . 5
β’ (π€ = π β {(lastSβπ€), (π€β0)} = {(lastSβπ), (πβ0)}) |
13 | 12 | eleq1d 2818 |
. . . 4
β’ (π€ = π β ({(lastSβπ€), (π€β0)} β πΈ β {(lastSβπ), (πβ0)} β πΈ)) |
14 | 1, 9, 13 | 3anbi123d 1436 |
. . 3
β’ (π€ = π β ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β πΈ β§ {(lastSβπ€), (π€β0)} β πΈ) β (π β β
β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ))) |
15 | 14 | elrab 3682 |
. 2
β’ (π β {π€ β Word π β£ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β πΈ β§ {(lastSβπ€), (π€β0)} β πΈ)} β (π β Word π β§ (π β β
β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ))) |
16 | | clwwlk.v |
. . . 4
β’ π = (VtxβπΊ) |
17 | | clwwlk.e |
. . . 4
β’ πΈ = (EdgβπΊ) |
18 | 16, 17 | clwwlk 29225 |
. . 3
β’
(ClWWalksβπΊ) =
{π€ β Word π β£ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β πΈ β§ {(lastSβπ€), (π€β0)} β πΈ)} |
19 | 18 | eleq2i 2825 |
. 2
β’ (π β (ClWWalksβπΊ) β π β {π€ β Word π β£ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β πΈ β§ {(lastSβπ€), (π€β0)} β πΈ)}) |
20 | | 3anass 1095 |
. . 3
β’ (((π β Word π β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ) β ((π β Word π β§ π β β
) β§ (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ))) |
21 | | anass 469 |
. . 3
β’ (((π β Word π β§ π β β
) β§ (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ)) β (π β Word π β§ (π β β
β§ (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ)))) |
22 | | 3anass 1095 |
. . . . 5
β’ ((π β β
β§
βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ) β (π β β
β§ (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ))) |
23 | 22 | bicomi 223 |
. . . 4
β’ ((π β β
β§
(βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ)) β (π β β
β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ)) |
24 | 23 | anbi2i 623 |
. . 3
β’ ((π β Word π β§ (π β β
β§ (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ))) β (π β Word π β§ (π β β
β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ))) |
25 | 20, 21, 24 | 3bitri 296 |
. 2
β’ (((π β Word π β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ) β (π β Word π β§ (π β β
β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ))) |
26 | 15, 19, 25 | 3bitr4i 302 |
1
β’ (π β (ClWWalksβπΊ) β ((π β Word π β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β πΈ β§ {(lastSβπ), (πβ0)} β πΈ)) |