![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfz1 | Structured version Visualization version GIF version |
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
2 | 1 | cardfz 14021 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) |
3 | 2 | fveq2d 6924 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))) |
4 | fzfid 14024 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
5 | 1 | hashgval 14382 | . . 3 ⊢ ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
7 | 1 | hashgf1o 14022 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
8 | f1ocnvfv2 7313 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ 𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) | |
9 | 7, 8 | mpan 689 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) |
10 | 3, 6, 9 | 3eqtr3d 2788 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ◡ccnv 5699 ↾ cres 5702 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ωcom 7903 reccrdg 8465 Fincfn 9003 cardccrd 10004 0cc0 11184 1c1 11185 + caddc 11187 ℕ0cn0 12553 ...cfz 13567 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 |
This theorem is referenced by: fz1eqb 14403 isfinite4 14411 hasheq0 14412 hashsng 14418 fseq1hash 14425 hashdom 14428 hashfz 14476 ishashinf 14512 isercolllem2 15714 isercoll 15716 summolem3 15762 summolem2a 15763 o1fsum 15861 climcndslem1 15897 climcndslem2 15898 harmonic 15907 mertenslem1 15932 prodmolem3 15981 prodmolem2a 15982 risefallfac 16072 bpolylem 16096 phicl2 16815 phibnd 16818 hashdvds 16822 phiprmpw 16823 eulerth 16830 pcfac 16946 prmreclem2 16964 prmreclem3 16965 prmreclem5 16967 4sqlem11 17002 vdwlem12 17039 ramub2 17061 ramlb 17066 0ram 17067 ram0 17069 dfod2 19606 gsumval3 19949 uniioombllem4 25640 birthdaylem2 27013 birthdaylem3 27014 basellem4 27145 basellem5 27146 basellem8 27149 ppiltx 27238 vmasum 27278 logfac2 27279 chpval2 27280 chpchtsum 27281 chpub 27282 logfaclbnd 27284 bposlem1 27346 lgsqrlem4 27411 gausslemma2dlem6 27434 lgseisenlem4 27440 lgsquadlem1 27442 lgsquadlem2 27443 lgsquadlem3 27444 dchrmusum2 27556 dchrisum0lem2a 27579 mudivsum 27592 mulogsumlem 27593 selberglem2 27608 ballotlem1 34451 ballotlemfmpn 34459 derangen2 35142 subfaclefac 35144 subfacp1lem1 35147 erdszelem10 35168 erdsze2lem1 35171 snmlff 35297 bcprod 35700 bj-finsumval0 37251 hashscontpow 42079 sticksstones2 42104 sticksstones5 42107 sticksstones10 42112 sticksstones12a 42114 fz1sumconst 42297 eldioph2lem1 42716 rp-isfinite5 43479 rp-isfinite6 43480 stoweidlem38 45959 dirkertrigeq 46022 etransclem32 46187 nn0mulfsum 48358 aacllem 48895 |
Copyright terms: Public domain | W3C validator |