| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfz1 | Structured version Visualization version GIF version | ||
| Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
| 2 | 1 | cardfz 13913 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) |
| 3 | 2 | fveq2d 6844 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))) |
| 4 | fzfid 13916 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
| 5 | 1 | hashgval 14276 | . . 3 ⊢ ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
| 7 | 1 | hashgf1o 13914 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
| 8 | f1ocnvfv2 7234 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ 𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) | |
| 9 | 7, 8 | mpan 690 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) |
| 10 | 3, 6, 9 | 3eqtr3d 2772 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 ◡ccnv 5630 ↾ cres 5633 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ωcom 7822 reccrdg 8354 Fincfn 8895 cardccrd 9866 0cc0 11046 1c1 11047 + caddc 11049 ℕ0cn0 12420 ...cfz 13446 ♯chash 14273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-hash 14274 |
| This theorem is referenced by: fz1eqb 14297 isfinite4 14305 hasheq0 14306 hashsng 14312 fseq1hash 14319 hashdom 14322 hashfz 14370 ishashinf 14406 isercolllem2 15609 isercoll 15611 summolem3 15657 summolem2a 15658 o1fsum 15756 climcndslem1 15792 climcndslem2 15793 harmonic 15802 mertenslem1 15827 prodmolem3 15876 prodmolem2a 15877 risefallfac 15967 bpolylem 15991 phicl2 16715 phibnd 16718 hashdvds 16722 phiprmpw 16723 eulerth 16730 pcfac 16847 prmreclem2 16865 prmreclem3 16866 prmreclem5 16868 4sqlem11 16903 vdwlem12 16940 ramub2 16962 ramlb 16967 0ram 16968 ram0 16970 dfod2 19479 gsumval3 19822 uniioombllem4 25521 birthdaylem2 26896 birthdaylem3 26897 basellem4 27028 basellem5 27029 basellem8 27032 ppiltx 27121 vmasum 27161 logfac2 27162 chpval2 27163 chpchtsum 27164 chpub 27165 logfaclbnd 27167 bposlem1 27229 lgsqrlem4 27294 gausslemma2dlem6 27317 lgseisenlem4 27323 lgsquadlem1 27325 lgsquadlem2 27326 lgsquadlem3 27327 dchrmusum2 27439 dchrisum0lem2a 27462 mudivsum 27475 mulogsumlem 27476 selberglem2 27491 cyclnumvtx 29781 ballotlem1 34472 ballotlemfmpn 34480 derangen2 35155 subfaclefac 35157 subfacp1lem1 35160 erdszelem10 35181 erdsze2lem1 35184 snmlff 35310 bcprod 35719 bj-finsumval0 37267 hashscontpow 42104 sticksstones2 42129 sticksstones5 42132 sticksstones10 42137 sticksstones12a 42139 fz1sumconst 42291 eldioph2lem1 42742 rp-isfinite5 43500 rp-isfinite6 43501 stoweidlem38 46030 dirkertrigeq 46093 etransclem32 46258 nn0mulfsum 48607 aacllem 49784 |
| Copyright terms: Public domain | W3C validator |