MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz1 Structured version   Visualization version   GIF version

Theorem hashfz1 14289
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21cardfz 13913 . . 3 (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))
32fveq2d 6844 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)))
4 fzfid 13916 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
51hashgval 14276 . . 3 ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁)))
64, 5syl 17 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁)))
71hashgf1o 13914 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
8 f1ocnvfv2 7234 . . 3 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁)
97, 8mpan 690 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁)
103, 6, 93eqtr3d 2772 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183  ccnv 5630  cres 5633  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354  Fincfn 8895  cardccrd 9866  0cc0 11046  1c1 11047   + caddc 11049  0cn0 12420  ...cfz 13446  chash 14273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-n0 12421  df-z 12508  df-uz 12772  df-fz 13447  df-hash 14274
This theorem is referenced by:  fz1eqb  14297  isfinite4  14305  hasheq0  14306  hashsng  14312  fseq1hash  14319  hashdom  14322  hashfz  14370  ishashinf  14406  isercolllem2  15609  isercoll  15611  summolem3  15657  summolem2a  15658  o1fsum  15756  climcndslem1  15792  climcndslem2  15793  harmonic  15802  mertenslem1  15827  prodmolem3  15876  prodmolem2a  15877  risefallfac  15967  bpolylem  15991  phicl2  16715  phibnd  16718  hashdvds  16722  phiprmpw  16723  eulerth  16730  pcfac  16847  prmreclem2  16865  prmreclem3  16866  prmreclem5  16868  4sqlem11  16903  vdwlem12  16940  ramub2  16962  ramlb  16967  0ram  16968  ram0  16970  dfod2  19479  gsumval3  19822  uniioombllem4  25521  birthdaylem2  26896  birthdaylem3  26897  basellem4  27028  basellem5  27029  basellem8  27032  ppiltx  27121  vmasum  27161  logfac2  27162  chpval2  27163  chpchtsum  27164  chpub  27165  logfaclbnd  27167  bposlem1  27229  lgsqrlem4  27294  gausslemma2dlem6  27317  lgseisenlem4  27323  lgsquadlem1  27325  lgsquadlem2  27326  lgsquadlem3  27327  dchrmusum2  27439  dchrisum0lem2a  27462  mudivsum  27475  mulogsumlem  27476  selberglem2  27491  cyclnumvtx  29781  ballotlem1  34472  ballotlemfmpn  34480  derangen2  35155  subfaclefac  35157  subfacp1lem1  35160  erdszelem10  35181  erdsze2lem1  35184  snmlff  35310  bcprod  35719  bj-finsumval0  37267  hashscontpow  42104  sticksstones2  42129  sticksstones5  42132  sticksstones10  42137  sticksstones12a  42139  fz1sumconst  42291  eldioph2lem1  42742  rp-isfinite5  43500  rp-isfinite6  43501  stoweidlem38  46030  dirkertrigeq  46093  etransclem32  46258  nn0mulfsum  48607  aacllem  49784
  Copyright terms: Public domain W3C validator