Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashfz1 | Structured version Visualization version GIF version |
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
2 | 1 | cardfz 13618 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) |
3 | 2 | fveq2d 6760 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))) |
4 | fzfid 13621 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
5 | 1 | hashgval 13975 | . . 3 ⊢ ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
7 | 1 | hashgf1o 13619 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
8 | f1ocnvfv2 7130 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ 𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) | |
9 | 7, 8 | mpan 686 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) |
10 | 3, 6, 9 | 3eqtr3d 2786 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ◡ccnv 5579 ↾ cres 5582 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ωcom 7687 reccrdg 8211 Fincfn 8691 cardccrd 9624 0cc0 10802 1c1 10803 + caddc 10805 ℕ0cn0 12163 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: fz1eqb 13997 isfinite4 14005 hasheq0 14006 hashsng 14012 fseq1hash 14019 hashdom 14022 hashfz 14070 ishashinf 14105 isercolllem2 15305 isercoll 15307 summolem3 15354 summolem2a 15355 o1fsum 15453 climcndslem1 15489 climcndslem2 15490 harmonic 15499 mertenslem1 15524 prodmolem3 15571 prodmolem2a 15572 risefallfac 15662 bpolylem 15686 phicl2 16397 phibnd 16400 hashdvds 16404 phiprmpw 16405 eulerth 16412 pcfac 16528 prmreclem2 16546 prmreclem3 16547 prmreclem5 16549 4sqlem11 16584 vdwlem12 16621 ramub2 16643 ramlb 16648 0ram 16649 ram0 16651 dfod2 19086 gsumval3 19423 uniioombllem4 24655 birthdaylem2 26007 birthdaylem3 26008 basellem4 26138 basellem5 26139 basellem8 26142 ppiltx 26231 vmasum 26269 logfac2 26270 chpval2 26271 chpchtsum 26272 chpub 26273 logfaclbnd 26275 bposlem1 26337 lgsqrlem4 26402 gausslemma2dlem6 26425 lgseisenlem4 26431 lgsquadlem1 26433 lgsquadlem2 26434 lgsquadlem3 26435 dchrmusum2 26547 dchrisum0lem2a 26570 mudivsum 26583 mulogsumlem 26584 selberglem2 26599 ballotlem1 32353 ballotlemfmpn 32361 derangen2 33036 subfaclefac 33038 subfacp1lem1 33041 erdszelem10 33062 erdsze2lem1 33065 snmlff 33191 bcprod 33610 bj-finsumval0 35383 sticksstones2 40031 sticksstones5 40034 sticksstones10 40039 sticksstones12a 40041 eldioph2lem1 40498 rp-isfinite5 41022 rp-isfinite6 41023 stoweidlem38 43469 dirkertrigeq 43532 etransclem32 43697 nn0mulfsum 45858 aacllem 46391 |
Copyright terms: Public domain | W3C validator |