| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfz1 | Structured version Visualization version GIF version | ||
| Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
| 2 | 1 | cardfz 13877 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) |
| 3 | 2 | fveq2d 6826 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))) |
| 4 | fzfid 13880 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
| 5 | 1 | hashgval 14240 | . . 3 ⊢ ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
| 7 | 1 | hashgf1o 13878 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
| 8 | f1ocnvfv2 7214 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ 𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) | |
| 9 | 7, 8 | mpan 690 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) |
| 10 | 3, 6, 9 | 3eqtr3d 2772 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ↦ cmpt 5173 ◡ccnv 5618 ↾ cres 5621 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ωcom 7799 reccrdg 8331 Fincfn 8872 cardccrd 9831 0cc0 11009 1c1 11010 + caddc 11012 ℕ0cn0 12384 ...cfz 13410 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 |
| This theorem is referenced by: fz1eqb 14261 isfinite4 14269 hasheq0 14270 hashsng 14276 fseq1hash 14283 hashdom 14286 hashfz 14334 ishashinf 14370 isercolllem2 15573 isercoll 15575 summolem3 15621 summolem2a 15622 o1fsum 15720 climcndslem1 15756 climcndslem2 15757 harmonic 15766 mertenslem1 15791 prodmolem3 15840 prodmolem2a 15841 risefallfac 15931 bpolylem 15955 phicl2 16679 phibnd 16682 hashdvds 16686 phiprmpw 16687 eulerth 16694 pcfac 16811 prmreclem2 16829 prmreclem3 16830 prmreclem5 16832 4sqlem11 16867 vdwlem12 16904 ramub2 16926 ramlb 16931 0ram 16932 ram0 16934 dfod2 19443 gsumval3 19786 uniioombllem4 25485 birthdaylem2 26860 birthdaylem3 26861 basellem4 26992 basellem5 26993 basellem8 26996 ppiltx 27085 vmasum 27125 logfac2 27126 chpval2 27127 chpchtsum 27128 chpub 27129 logfaclbnd 27131 bposlem1 27193 lgsqrlem4 27258 gausslemma2dlem6 27281 lgseisenlem4 27287 lgsquadlem1 27289 lgsquadlem2 27290 lgsquadlem3 27291 dchrmusum2 27403 dchrisum0lem2a 27426 mudivsum 27439 mulogsumlem 27440 selberglem2 27455 cyclnumvtx 29749 ballotlem1 34471 ballotlemfmpn 34479 derangen2 35167 subfaclefac 35169 subfacp1lem1 35172 erdszelem10 35193 erdsze2lem1 35196 snmlff 35322 bcprod 35731 bj-finsumval0 37279 hashscontpow 42115 sticksstones2 42140 sticksstones5 42143 sticksstones10 42148 sticksstones12a 42150 fz1sumconst 42302 eldioph2lem1 42753 rp-isfinite5 43510 rp-isfinite6 43511 stoweidlem38 46039 dirkertrigeq 46102 etransclem32 46267 nn0mulfsum 48629 aacllem 49806 |
| Copyright terms: Public domain | W3C validator |