MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz1 Structured version   Visualization version   GIF version

Theorem hashfz1 14058
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21cardfz 13688 . . 3 (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))
32fveq2d 6775 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)))
4 fzfid 13691 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
51hashgval 14045 . . 3 ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁)))
64, 5syl 17 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁)))
71hashgf1o 13689 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
8 f1ocnvfv2 7146 . . 3 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁)
97, 8mpan 687 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁)
103, 6, 93eqtr3d 2788 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  Vcvv 3431  cmpt 5162  ccnv 5589  cres 5592  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  ωcom 7706  reccrdg 8231  Fincfn 8716  cardccrd 9694  0cc0 10872  1c1 10873   + caddc 10875  0cn0 12233  ...cfz 13238  chash 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-hash 14043
This theorem is referenced by:  fz1eqb  14067  isfinite4  14075  hasheq0  14076  hashsng  14082  fseq1hash  14089  hashdom  14092  hashfz  14140  ishashinf  14175  isercolllem2  15375  isercoll  15377  summolem3  15424  summolem2a  15425  o1fsum  15523  climcndslem1  15559  climcndslem2  15560  harmonic  15569  mertenslem1  15594  prodmolem3  15641  prodmolem2a  15642  risefallfac  15732  bpolylem  15756  phicl2  16467  phibnd  16470  hashdvds  16474  phiprmpw  16475  eulerth  16482  pcfac  16598  prmreclem2  16616  prmreclem3  16617  prmreclem5  16619  4sqlem11  16654  vdwlem12  16691  ramub2  16713  ramlb  16718  0ram  16719  ram0  16721  dfod2  19169  gsumval3  19506  uniioombllem4  24748  birthdaylem2  26100  birthdaylem3  26101  basellem4  26231  basellem5  26232  basellem8  26235  ppiltx  26324  vmasum  26362  logfac2  26363  chpval2  26364  chpchtsum  26365  chpub  26366  logfaclbnd  26368  bposlem1  26430  lgsqrlem4  26495  gausslemma2dlem6  26518  lgseisenlem4  26524  lgsquadlem1  26526  lgsquadlem2  26527  lgsquadlem3  26528  dchrmusum2  26640  dchrisum0lem2a  26663  mudivsum  26676  mulogsumlem  26677  selberglem2  26692  ballotlem1  32449  ballotlemfmpn  32457  derangen2  33132  subfaclefac  33134  subfacp1lem1  33137  erdszelem10  33158  erdsze2lem1  33161  snmlff  33287  bcprod  33700  bj-finsumval0  35452  sticksstones2  40100  sticksstones5  40103  sticksstones10  40108  sticksstones12a  40110  eldioph2lem1  40579  rp-isfinite5  41103  rp-isfinite6  41104  stoweidlem38  43550  dirkertrigeq  43613  etransclem32  43778  nn0mulfsum  45939  aacllem  46474
  Copyright terms: Public domain W3C validator