Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashfz1 | Structured version Visualization version GIF version |
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
2 | 1 | cardfz 13690 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) |
3 | 2 | fveq2d 6778 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))) |
4 | fzfid 13693 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
5 | 1 | hashgval 14047 | . . 3 ⊢ ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
7 | 1 | hashgf1o 13691 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
8 | f1ocnvfv2 7149 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ 𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) | |
9 | 7, 8 | mpan 687 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) |
10 | 3, 6, 9 | 3eqtr3d 2786 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ↦ cmpt 5157 ◡ccnv 5588 ↾ cres 5591 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ωcom 7712 reccrdg 8240 Fincfn 8733 cardccrd 9693 0cc0 10871 1c1 10872 + caddc 10874 ℕ0cn0 12233 ...cfz 13239 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: fz1eqb 14069 isfinite4 14077 hasheq0 14078 hashsng 14084 fseq1hash 14091 hashdom 14094 hashfz 14142 ishashinf 14177 isercolllem2 15377 isercoll 15379 summolem3 15426 summolem2a 15427 o1fsum 15525 climcndslem1 15561 climcndslem2 15562 harmonic 15571 mertenslem1 15596 prodmolem3 15643 prodmolem2a 15644 risefallfac 15734 bpolylem 15758 phicl2 16469 phibnd 16472 hashdvds 16476 phiprmpw 16477 eulerth 16484 pcfac 16600 prmreclem2 16618 prmreclem3 16619 prmreclem5 16621 4sqlem11 16656 vdwlem12 16693 ramub2 16715 ramlb 16720 0ram 16721 ram0 16723 dfod2 19171 gsumval3 19508 uniioombllem4 24750 birthdaylem2 26102 birthdaylem3 26103 basellem4 26233 basellem5 26234 basellem8 26237 ppiltx 26326 vmasum 26364 logfac2 26365 chpval2 26366 chpchtsum 26367 chpub 26368 logfaclbnd 26370 bposlem1 26432 lgsqrlem4 26497 gausslemma2dlem6 26520 lgseisenlem4 26526 lgsquadlem1 26528 lgsquadlem2 26529 lgsquadlem3 26530 dchrmusum2 26642 dchrisum0lem2a 26665 mudivsum 26678 mulogsumlem 26679 selberglem2 26694 ballotlem1 32453 ballotlemfmpn 32461 derangen2 33136 subfaclefac 33138 subfacp1lem1 33141 erdszelem10 33162 erdsze2lem1 33165 snmlff 33291 bcprod 33704 bj-finsumval0 35456 sticksstones2 40103 sticksstones5 40106 sticksstones10 40111 sticksstones12a 40113 eldioph2lem1 40582 rp-isfinite5 41124 rp-isfinite6 41125 stoweidlem38 43579 dirkertrigeq 43642 etransclem32 43807 nn0mulfsum 45970 aacllem 46505 |
Copyright terms: Public domain | W3C validator |