| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfz1 | Structured version Visualization version GIF version | ||
| Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
| 2 | 1 | cardfz 13935 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) |
| 3 | 2 | fveq2d 6862 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))) |
| 4 | fzfid 13938 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
| 5 | 1 | hashgval 14298 | . . 3 ⊢ ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
| 7 | 1 | hashgf1o 13936 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
| 8 | f1ocnvfv2 7252 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ 𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) | |
| 9 | 7, 8 | mpan 690 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) |
| 10 | 3, 6, 9 | 3eqtr3d 2772 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 ◡ccnv 5637 ↾ cres 5640 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ωcom 7842 reccrdg 8377 Fincfn 8918 cardccrd 9888 0cc0 11068 1c1 11069 + caddc 11071 ℕ0cn0 12442 ...cfz 13468 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: fz1eqb 14319 isfinite4 14327 hasheq0 14328 hashsng 14334 fseq1hash 14341 hashdom 14344 hashfz 14392 ishashinf 14428 isercolllem2 15632 isercoll 15634 summolem3 15680 summolem2a 15681 o1fsum 15779 climcndslem1 15815 climcndslem2 15816 harmonic 15825 mertenslem1 15850 prodmolem3 15899 prodmolem2a 15900 risefallfac 15990 bpolylem 16014 phicl2 16738 phibnd 16741 hashdvds 16745 phiprmpw 16746 eulerth 16753 pcfac 16870 prmreclem2 16888 prmreclem3 16889 prmreclem5 16891 4sqlem11 16926 vdwlem12 16963 ramub2 16985 ramlb 16990 0ram 16991 ram0 16993 dfod2 19494 gsumval3 19837 uniioombllem4 25487 birthdaylem2 26862 birthdaylem3 26863 basellem4 26994 basellem5 26995 basellem8 26998 ppiltx 27087 vmasum 27127 logfac2 27128 chpval2 27129 chpchtsum 27130 chpub 27131 logfaclbnd 27133 bposlem1 27195 lgsqrlem4 27260 gausslemma2dlem6 27283 lgseisenlem4 27289 lgsquadlem1 27291 lgsquadlem2 27292 lgsquadlem3 27293 dchrmusum2 27405 dchrisum0lem2a 27428 mudivsum 27441 mulogsumlem 27442 selberglem2 27457 cyclnumvtx 29730 ballotlem1 34478 ballotlemfmpn 34486 derangen2 35161 subfaclefac 35163 subfacp1lem1 35166 erdszelem10 35187 erdsze2lem1 35190 snmlff 35316 bcprod 35725 bj-finsumval0 37273 hashscontpow 42110 sticksstones2 42135 sticksstones5 42138 sticksstones10 42143 sticksstones12a 42145 fz1sumconst 42297 eldioph2lem1 42748 rp-isfinite5 43506 rp-isfinite6 43507 stoweidlem38 46036 dirkertrigeq 46099 etransclem32 46264 nn0mulfsum 48613 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |