Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashfz1 | Structured version Visualization version GIF version |
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
2 | 1 | cardfz 13688 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) |
3 | 2 | fveq2d 6775 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))) |
4 | fzfid 13691 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
5 | 1 | hashgval 14045 | . . 3 ⊢ ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
7 | 1 | hashgf1o 13689 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
8 | f1ocnvfv2 7146 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ 𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) | |
9 | 7, 8 | mpan 687 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) |
10 | 3, 6, 9 | 3eqtr3d 2788 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ↦ cmpt 5162 ◡ccnv 5589 ↾ cres 5592 –1-1-onto→wf1o 6431 ‘cfv 6432 (class class class)co 7271 ωcom 7706 reccrdg 8231 Fincfn 8716 cardccrd 9694 0cc0 10872 1c1 10873 + caddc 10875 ℕ0cn0 12233 ...cfz 13238 ♯chash 14042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-hash 14043 |
This theorem is referenced by: fz1eqb 14067 isfinite4 14075 hasheq0 14076 hashsng 14082 fseq1hash 14089 hashdom 14092 hashfz 14140 ishashinf 14175 isercolllem2 15375 isercoll 15377 summolem3 15424 summolem2a 15425 o1fsum 15523 climcndslem1 15559 climcndslem2 15560 harmonic 15569 mertenslem1 15594 prodmolem3 15641 prodmolem2a 15642 risefallfac 15732 bpolylem 15756 phicl2 16467 phibnd 16470 hashdvds 16474 phiprmpw 16475 eulerth 16482 pcfac 16598 prmreclem2 16616 prmreclem3 16617 prmreclem5 16619 4sqlem11 16654 vdwlem12 16691 ramub2 16713 ramlb 16718 0ram 16719 ram0 16721 dfod2 19169 gsumval3 19506 uniioombllem4 24748 birthdaylem2 26100 birthdaylem3 26101 basellem4 26231 basellem5 26232 basellem8 26235 ppiltx 26324 vmasum 26362 logfac2 26363 chpval2 26364 chpchtsum 26365 chpub 26366 logfaclbnd 26368 bposlem1 26430 lgsqrlem4 26495 gausslemma2dlem6 26518 lgseisenlem4 26524 lgsquadlem1 26526 lgsquadlem2 26527 lgsquadlem3 26528 dchrmusum2 26640 dchrisum0lem2a 26663 mudivsum 26676 mulogsumlem 26677 selberglem2 26692 ballotlem1 32449 ballotlemfmpn 32457 derangen2 33132 subfaclefac 33134 subfacp1lem1 33137 erdszelem10 33158 erdsze2lem1 33161 snmlff 33287 bcprod 33700 bj-finsumval0 35452 sticksstones2 40100 sticksstones5 40103 sticksstones10 40108 sticksstones12a 40110 eldioph2lem1 40579 rp-isfinite5 41103 rp-isfinite6 41104 stoweidlem38 43550 dirkertrigeq 43613 etransclem32 43778 nn0mulfsum 45939 aacllem 46474 |
Copyright terms: Public domain | W3C validator |