MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz1 Structured version   Visualization version   GIF version

Theorem hashfz1 14318
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21cardfz 13942 . . 3 (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))
32fveq2d 6865 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)))
4 fzfid 13945 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
51hashgval 14305 . . 3 ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁)))
64, 5syl 17 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁)))
71hashgf1o 13943 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
8 f1ocnvfv2 7255 . . 3 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁)
97, 8mpan 690 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁)
103, 6, 93eqtr3d 2773 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  ccnv 5640  cres 5643  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845  reccrdg 8380  Fincfn 8921  cardccrd 9895  0cc0 11075  1c1 11076   + caddc 11078  0cn0 12449  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  fz1eqb  14326  isfinite4  14334  hasheq0  14335  hashsng  14341  fseq1hash  14348  hashdom  14351  hashfz  14399  ishashinf  14435  isercolllem2  15639  isercoll  15641  summolem3  15687  summolem2a  15688  o1fsum  15786  climcndslem1  15822  climcndslem2  15823  harmonic  15832  mertenslem1  15857  prodmolem3  15906  prodmolem2a  15907  risefallfac  15997  bpolylem  16021  phicl2  16745  phibnd  16748  hashdvds  16752  phiprmpw  16753  eulerth  16760  pcfac  16877  prmreclem2  16895  prmreclem3  16896  prmreclem5  16898  4sqlem11  16933  vdwlem12  16970  ramub2  16992  ramlb  16997  0ram  16998  ram0  17000  dfod2  19501  gsumval3  19844  uniioombllem4  25494  birthdaylem2  26869  birthdaylem3  26870  basellem4  27001  basellem5  27002  basellem8  27005  ppiltx  27094  vmasum  27134  logfac2  27135  chpval2  27136  chpchtsum  27137  chpub  27138  logfaclbnd  27140  bposlem1  27202  lgsqrlem4  27267  gausslemma2dlem6  27290  lgseisenlem4  27296  lgsquadlem1  27298  lgsquadlem2  27299  lgsquadlem3  27300  dchrmusum2  27412  dchrisum0lem2a  27435  mudivsum  27448  mulogsumlem  27449  selberglem2  27464  cyclnumvtx  29737  ballotlem1  34485  ballotlemfmpn  34493  derangen2  35168  subfaclefac  35170  subfacp1lem1  35173  erdszelem10  35194  erdsze2lem1  35197  snmlff  35323  bcprod  35732  bj-finsumval0  37280  hashscontpow  42117  sticksstones2  42142  sticksstones5  42145  sticksstones10  42150  sticksstones12a  42152  fz1sumconst  42304  eldioph2lem1  42755  rp-isfinite5  43513  rp-isfinite6  43514  stoweidlem38  46043  dirkertrigeq  46106  etransclem32  46271  nn0mulfsum  48617  aacllem  49794
  Copyright terms: Public domain W3C validator