MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz1 Structured version   Visualization version   GIF version

Theorem hashfz1 14060
Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)

Proof of Theorem hashfz1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21cardfz 13690 . . 3 (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))
32fveq2d 6778 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)))
4 fzfid 13693 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
51hashgval 14047 . . 3 ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁)))
64, 5syl 17 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁)))
71hashgf1o 13691 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
8 f1ocnvfv2 7149 . . 3 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁)
97, 8mpan 687 . 2 (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁)
103, 6, 93eqtr3d 2786 1 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157  ccnv 5588  cres 5591  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240  Fincfn 8733  cardccrd 9693  0cc0 10871  1c1 10872   + caddc 10874  0cn0 12233  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  fz1eqb  14069  isfinite4  14077  hasheq0  14078  hashsng  14084  fseq1hash  14091  hashdom  14094  hashfz  14142  ishashinf  14177  isercolllem2  15377  isercoll  15379  summolem3  15426  summolem2a  15427  o1fsum  15525  climcndslem1  15561  climcndslem2  15562  harmonic  15571  mertenslem1  15596  prodmolem3  15643  prodmolem2a  15644  risefallfac  15734  bpolylem  15758  phicl2  16469  phibnd  16472  hashdvds  16476  phiprmpw  16477  eulerth  16484  pcfac  16600  prmreclem2  16618  prmreclem3  16619  prmreclem5  16621  4sqlem11  16656  vdwlem12  16693  ramub2  16715  ramlb  16720  0ram  16721  ram0  16723  dfod2  19171  gsumval3  19508  uniioombllem4  24750  birthdaylem2  26102  birthdaylem3  26103  basellem4  26233  basellem5  26234  basellem8  26237  ppiltx  26326  vmasum  26364  logfac2  26365  chpval2  26366  chpchtsum  26367  chpub  26368  logfaclbnd  26370  bposlem1  26432  lgsqrlem4  26497  gausslemma2dlem6  26520  lgseisenlem4  26526  lgsquadlem1  26528  lgsquadlem2  26529  lgsquadlem3  26530  dchrmusum2  26642  dchrisum0lem2a  26665  mudivsum  26678  mulogsumlem  26679  selberglem2  26694  ballotlem1  32453  ballotlemfmpn  32461  derangen2  33136  subfaclefac  33138  subfacp1lem1  33141  erdszelem10  33162  erdsze2lem1  33165  snmlff  33291  bcprod  33704  bj-finsumval0  35456  sticksstones2  40103  sticksstones5  40106  sticksstones10  40111  sticksstones12a  40113  eldioph2lem1  40582  rp-isfinite5  41124  rp-isfinite6  41125  stoweidlem38  43579  dirkertrigeq  43642  etransclem32  43807  nn0mulfsum  45970  aacllem  46505
  Copyright terms: Public domain W3C validator