| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfz1 | Structured version Visualization version GIF version | ||
| Description: The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashfz1 | ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
| 2 | 1 | cardfz 13986 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) |
| 3 | 2 | fveq2d 6879 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁))) |
| 4 | fzfid 13989 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
| 5 | 1 | hashgval 14349 | . . 3 ⊢ ((1...𝑁) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...𝑁))) = (♯‘(1...𝑁))) |
| 7 | 1 | hashgf1o 13987 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 |
| 8 | f1ocnvfv2 7269 | . . 3 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ 𝑁 ∈ ℕ0) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) | |
| 9 | 7, 8 | mpan 690 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑁)) = 𝑁) |
| 10 | 3, 6, 9 | 3eqtr3d 2778 | 1 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↦ cmpt 5201 ◡ccnv 5653 ↾ cres 5656 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 ωcom 7859 reccrdg 8421 Fincfn 8957 cardccrd 9947 0cc0 11127 1c1 11128 + caddc 11130 ℕ0cn0 12499 ...cfz 13522 ♯chash 14346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-hash 14347 |
| This theorem is referenced by: fz1eqb 14370 isfinite4 14378 hasheq0 14379 hashsng 14385 fseq1hash 14392 hashdom 14395 hashfz 14443 ishashinf 14479 isercolllem2 15680 isercoll 15682 summolem3 15728 summolem2a 15729 o1fsum 15827 climcndslem1 15863 climcndslem2 15864 harmonic 15873 mertenslem1 15898 prodmolem3 15947 prodmolem2a 15948 risefallfac 16038 bpolylem 16062 phicl2 16785 phibnd 16788 hashdvds 16792 phiprmpw 16793 eulerth 16800 pcfac 16917 prmreclem2 16935 prmreclem3 16936 prmreclem5 16938 4sqlem11 16973 vdwlem12 17010 ramub2 17032 ramlb 17037 0ram 17038 ram0 17040 dfod2 19543 gsumval3 19886 uniioombllem4 25537 birthdaylem2 26912 birthdaylem3 26913 basellem4 27044 basellem5 27045 basellem8 27048 ppiltx 27137 vmasum 27177 logfac2 27178 chpval2 27179 chpchtsum 27180 chpub 27181 logfaclbnd 27183 bposlem1 27245 lgsqrlem4 27310 gausslemma2dlem6 27333 lgseisenlem4 27339 lgsquadlem1 27341 lgsquadlem2 27342 lgsquadlem3 27343 dchrmusum2 27455 dchrisum0lem2a 27478 mudivsum 27491 mulogsumlem 27492 selberglem2 27507 cyclnumvtx 29728 ballotlem1 34465 ballotlemfmpn 34473 derangen2 35142 subfaclefac 35144 subfacp1lem1 35147 erdszelem10 35168 erdsze2lem1 35171 snmlff 35297 bcprod 35701 bj-finsumval0 37249 hashscontpow 42081 sticksstones2 42106 sticksstones5 42109 sticksstones10 42114 sticksstones12a 42116 fz1sumconst 42305 eldioph2lem1 42730 rp-isfinite5 43488 rp-isfinite6 43489 stoweidlem38 46015 dirkertrigeq 46078 etransclem32 46243 nn0mulfsum 48552 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |