| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > domnlcanOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of domnlcan 20645 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| domncanOLD.b | ⊢ 𝐵 = (Base‘𝑅) |
| domncanOLD.1 | ⊢ 0 = (0g‘𝑅) |
| domncanOLD.m | ⊢ · = (.r‘𝑅) |
| domncanOLD.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| domncanOLD.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| domncanOLD.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| domnlcanOLD.r | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| domnlcanOLD.2 | ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑍)) |
| Ref | Expression |
|---|---|
| domnlcanOLD | ⊢ (𝜑 → 𝑌 = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnlcanOLD.2 | . 2 ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑍)) | |
| 2 | oveq1 7362 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏)) | |
| 3 | oveq1 7362 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 · 𝑐) = (𝑋 · 𝑐)) | |
| 4 | 2, 3 | eqeq12d 2749 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑎 · 𝑏) = (𝑎 · 𝑐) ↔ (𝑋 · 𝑏) = (𝑋 · 𝑐))) |
| 5 | 4 | imbi1d 341 | . . 3 ⊢ (𝑎 = 𝑋 → (((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑋 · 𝑏) = (𝑋 · 𝑐) → 𝑏 = 𝑐))) |
| 6 | oveq2 7363 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌)) | |
| 7 | 6 | eqeq1d 2735 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑋 · 𝑏) = (𝑋 · 𝑐) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑐))) |
| 8 | eqeq1 2737 | . . . 4 ⊢ (𝑏 = 𝑌 → (𝑏 = 𝑐 ↔ 𝑌 = 𝑐)) | |
| 9 | 7, 8 | imbi12d 344 | . . 3 ⊢ (𝑏 = 𝑌 → (((𝑋 · 𝑏) = (𝑋 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑐) → 𝑌 = 𝑐))) |
| 10 | oveq2 7363 | . . . . 5 ⊢ (𝑐 = 𝑍 → (𝑋 · 𝑐) = (𝑋 · 𝑍)) | |
| 11 | 10 | eqeq2d 2744 | . . . 4 ⊢ (𝑐 = 𝑍 → ((𝑋 · 𝑌) = (𝑋 · 𝑐) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑍))) |
| 12 | eqeq2 2745 | . . . 4 ⊢ (𝑐 = 𝑍 → (𝑌 = 𝑐 ↔ 𝑌 = 𝑍)) | |
| 13 | 11, 12 | imbi12d 344 | . . 3 ⊢ (𝑐 = 𝑍 → (((𝑋 · 𝑌) = (𝑋 · 𝑐) → 𝑌 = 𝑐) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑍) → 𝑌 = 𝑍))) |
| 14 | domnlcanOLD.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Domn) | |
| 15 | domncanOLD.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 16 | domncanOLD.1 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 17 | domncanOLD.m | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 18 | 15, 16, 17 | isdomn4 20640 | . . . . 5 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))) |
| 19 | 14, 18 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))) |
| 20 | 19 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) |
| 21 | domncanOLD.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
| 22 | domncanOLD.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 23 | domncanOLD.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 24 | 5, 9, 13, 20, 21, 22, 23 | rspc3dv 3592 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) → 𝑌 = 𝑍)) |
| 25 | 1, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑌 = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∖ cdif 3895 {csn 4577 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 .rcmulr 17169 0gc0g 17350 NzRingcnzr 20436 Domncdomn 20616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-nzr 20437 df-domn 20619 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |