| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > domnlcanOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of domnlcan 20686 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| domncanOLD.b | ⊢ 𝐵 = (Base‘𝑅) |
| domncanOLD.1 | ⊢ 0 = (0g‘𝑅) |
| domncanOLD.m | ⊢ · = (.r‘𝑅) |
| domncanOLD.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| domncanOLD.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| domncanOLD.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| domnlcanOLD.r | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| domnlcanOLD.2 | ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑍)) |
| Ref | Expression |
|---|---|
| domnlcanOLD | ⊢ (𝜑 → 𝑌 = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnlcanOLD.2 | . 2 ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑍)) | |
| 2 | oveq1 7417 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏)) | |
| 3 | oveq1 7417 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 · 𝑐) = (𝑋 · 𝑐)) | |
| 4 | 2, 3 | eqeq12d 2752 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑎 · 𝑏) = (𝑎 · 𝑐) ↔ (𝑋 · 𝑏) = (𝑋 · 𝑐))) |
| 5 | 4 | imbi1d 341 | . . 3 ⊢ (𝑎 = 𝑋 → (((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑋 · 𝑏) = (𝑋 · 𝑐) → 𝑏 = 𝑐))) |
| 6 | oveq2 7418 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌)) | |
| 7 | 6 | eqeq1d 2738 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑋 · 𝑏) = (𝑋 · 𝑐) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑐))) |
| 8 | eqeq1 2740 | . . . 4 ⊢ (𝑏 = 𝑌 → (𝑏 = 𝑐 ↔ 𝑌 = 𝑐)) | |
| 9 | 7, 8 | imbi12d 344 | . . 3 ⊢ (𝑏 = 𝑌 → (((𝑋 · 𝑏) = (𝑋 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑐) → 𝑌 = 𝑐))) |
| 10 | oveq2 7418 | . . . . 5 ⊢ (𝑐 = 𝑍 → (𝑋 · 𝑐) = (𝑋 · 𝑍)) | |
| 11 | 10 | eqeq2d 2747 | . . . 4 ⊢ (𝑐 = 𝑍 → ((𝑋 · 𝑌) = (𝑋 · 𝑐) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑍))) |
| 12 | eqeq2 2748 | . . . 4 ⊢ (𝑐 = 𝑍 → (𝑌 = 𝑐 ↔ 𝑌 = 𝑍)) | |
| 13 | 11, 12 | imbi12d 344 | . . 3 ⊢ (𝑐 = 𝑍 → (((𝑋 · 𝑌) = (𝑋 · 𝑐) → 𝑌 = 𝑐) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑍) → 𝑌 = 𝑍))) |
| 14 | domnlcanOLD.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Domn) | |
| 15 | domncanOLD.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 16 | domncanOLD.1 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 17 | domncanOLD.m | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 18 | 15, 16, 17 | isdomn4 20681 | . . . . 5 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))) |
| 19 | 14, 18 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))) |
| 20 | 19 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) |
| 21 | domncanOLD.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
| 22 | domncanOLD.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 23 | domncanOLD.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 24 | 5, 9, 13, 20, 21, 22, 23 | rspc3dv 3625 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) → 𝑌 = 𝑍)) |
| 25 | 1, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑌 = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∖ cdif 3928 {csn 4606 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 0gc0g 17458 NzRingcnzr 20477 Domncdomn 20657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-nzr 20478 df-domn 20660 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |