| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnlcanb | Structured version Visualization version GIF version | ||
| Description: Left-cancellation law for domains, biconditional version of domnlcan 20606. (Contributed by Thierry Arnoux, 8-Jun-2025.) Shorten this theorem and domnlcan 20606 overall. (Revised by SN, 21-Jun-2025.) |
| Ref | Expression |
|---|---|
| domncan.b | ⊢ 𝐵 = (Base‘𝑅) |
| domncan.0 | ⊢ 0 = (0g‘𝑅) |
| domncan.m | ⊢ · = (.r‘𝑅) |
| domncan.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| domncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| domncan.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| domncan.r | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| Ref | Expression |
|---|---|
| domnlcanb | ⊢ (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) ↔ 𝑌 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7376 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏)) | |
| 2 | oveq1 7376 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 · 𝑐) = (𝑋 · 𝑐)) | |
| 3 | 1, 2 | eqeq12d 2745 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑎 · 𝑏) = (𝑎 · 𝑐) ↔ (𝑋 · 𝑏) = (𝑋 · 𝑐))) |
| 4 | 3 | imbi1d 341 | . . 3 ⊢ (𝑎 = 𝑋 → (((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑋 · 𝑏) = (𝑋 · 𝑐) → 𝑏 = 𝑐))) |
| 5 | oveq2 7377 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌)) | |
| 6 | 5 | eqeq1d 2731 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑋 · 𝑏) = (𝑋 · 𝑐) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑐))) |
| 7 | eqeq1 2733 | . . . 4 ⊢ (𝑏 = 𝑌 → (𝑏 = 𝑐 ↔ 𝑌 = 𝑐)) | |
| 8 | 6, 7 | imbi12d 344 | . . 3 ⊢ (𝑏 = 𝑌 → (((𝑋 · 𝑏) = (𝑋 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑐) → 𝑌 = 𝑐))) |
| 9 | oveq2 7377 | . . . . 5 ⊢ (𝑐 = 𝑍 → (𝑋 · 𝑐) = (𝑋 · 𝑍)) | |
| 10 | 9 | eqeq2d 2740 | . . . 4 ⊢ (𝑐 = 𝑍 → ((𝑋 · 𝑌) = (𝑋 · 𝑐) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑍))) |
| 11 | eqeq2 2741 | . . . 4 ⊢ (𝑐 = 𝑍 → (𝑌 = 𝑐 ↔ 𝑌 = 𝑍)) | |
| 12 | 10, 11 | imbi12d 344 | . . 3 ⊢ (𝑐 = 𝑍 → (((𝑋 · 𝑌) = (𝑋 · 𝑐) → 𝑌 = 𝑐) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑍) → 𝑌 = 𝑍))) |
| 13 | domncan.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Domn) | |
| 14 | domncan.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 15 | domncan.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 16 | domncan.m | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 17 | 14, 15, 16 | isdomn4 20601 | . . . . 5 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))) |
| 18 | 13, 17 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))) |
| 19 | 18 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) |
| 20 | domncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
| 21 | domncan.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 22 | domncan.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 23 | 4, 8, 12, 19, 20, 21, 22 | rspc3dv 3604 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) → 𝑌 = 𝑍)) |
| 24 | oveq2 7377 | . 2 ⊢ (𝑌 = 𝑍 → (𝑋 · 𝑌) = (𝑋 · 𝑍)) | |
| 25 | 23, 24 | impbid1 225 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) ↔ 𝑌 = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 {csn 4585 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 .rcmulr 17197 0gc0g 17378 NzRingcnzr 20397 Domncdomn 20577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-nzr 20398 df-domn 20580 |
| This theorem is referenced by: domnlcan 20606 ply1dg1rt 33521 |
| Copyright terms: Public domain | W3C validator |