MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnlcanb Structured version   Visualization version   GIF version

Theorem domnlcanb 20644
Description: Left-cancellation law for domains, biconditional version of domnlcan 20645. (Contributed by Thierry Arnoux, 8-Jun-2025.) Shorten this theorem and domnlcan 20645 overall. (Revised by SN, 21-Jun-2025.)
Hypotheses
Ref Expression
domncan.b 𝐵 = (Base‘𝑅)
domncan.0 0 = (0g𝑅)
domncan.m · = (.r𝑅)
domncan.x (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))
domncan.y (𝜑𝑌𝐵)
domncan.z (𝜑𝑍𝐵)
domncan.r (𝜑𝑅 ∈ Domn)
Assertion
Ref Expression
domnlcanb (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) ↔ 𝑌 = 𝑍))

Proof of Theorem domnlcanb
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7362 . . . . 5 (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏))
2 oveq1 7362 . . . . 5 (𝑎 = 𝑋 → (𝑎 · 𝑐) = (𝑋 · 𝑐))
31, 2eqeq12d 2749 . . . 4 (𝑎 = 𝑋 → ((𝑎 · 𝑏) = (𝑎 · 𝑐) ↔ (𝑋 · 𝑏) = (𝑋 · 𝑐)))
43imbi1d 341 . . 3 (𝑎 = 𝑋 → (((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑋 · 𝑏) = (𝑋 · 𝑐) → 𝑏 = 𝑐)))
5 oveq2 7363 . . . . 5 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
65eqeq1d 2735 . . . 4 (𝑏 = 𝑌 → ((𝑋 · 𝑏) = (𝑋 · 𝑐) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑐)))
7 eqeq1 2737 . . . 4 (𝑏 = 𝑌 → (𝑏 = 𝑐𝑌 = 𝑐))
86, 7imbi12d 344 . . 3 (𝑏 = 𝑌 → (((𝑋 · 𝑏) = (𝑋 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑐) → 𝑌 = 𝑐)))
9 oveq2 7363 . . . . 5 (𝑐 = 𝑍 → (𝑋 · 𝑐) = (𝑋 · 𝑍))
109eqeq2d 2744 . . . 4 (𝑐 = 𝑍 → ((𝑋 · 𝑌) = (𝑋 · 𝑐) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑍)))
11 eqeq2 2745 . . . 4 (𝑐 = 𝑍 → (𝑌 = 𝑐𝑌 = 𝑍))
1210, 11imbi12d 344 . . 3 (𝑐 = 𝑍 → (((𝑋 · 𝑌) = (𝑋 · 𝑐) → 𝑌 = 𝑐) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑍) → 𝑌 = 𝑍)))
13 domncan.r . . . . 5 (𝜑𝑅 ∈ Domn)
14 domncan.b . . . . . 6 𝐵 = (Base‘𝑅)
15 domncan.0 . . . . . 6 0 = (0g𝑅)
16 domncan.m . . . . . 6 · = (.r𝑅)
1714, 15, 16isdomn4 20640 . . . . 5 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
1813, 17sylib 218 . . . 4 (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
1918simprd 495 . . 3 (𝜑 → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
20 domncan.x . . 3 (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))
21 domncan.y . . 3 (𝜑𝑌𝐵)
22 domncan.z . . 3 (𝜑𝑍𝐵)
234, 8, 12, 19, 20, 21, 22rspc3dv 3592 . 2 (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) → 𝑌 = 𝑍))
24 oveq2 7363 . 2 (𝑌 = 𝑍 → (𝑋 · 𝑌) = (𝑋 · 𝑍))
2523, 24impbid1 225 1 (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) ↔ 𝑌 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cdif 3895  {csn 4577  cfv 6489  (class class class)co 7355  Basecbs 17127  .rcmulr 17169  0gc0g 17350  NzRingcnzr 20436  Domncdomn 20616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-nzr 20437  df-domn 20619
This theorem is referenced by:  domnlcan  20645  ply1dg1rt  33589
  Copyright terms: Public domain W3C validator