| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdomn4r | Structured version Visualization version GIF version | ||
| Description: A ring is a domain iff it is nonzero and the right cancellation law for multiplication holds. (Contributed by SN, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| isdomn4r.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdomn4r.0 | ⊢ 0 = (0g‘𝑅) |
| isdomn4r.x | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| isdomn4r | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (𝐵 ∖ { 0 })((𝑎 · 𝑐) = (𝑏 · 𝑐) → 𝑎 = 𝑏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 2 | isdomn4r.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | opprbas 20246 | . . 3 ⊢ 𝐵 = (Base‘(oppr‘𝑅)) |
| 4 | isdomn4r.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 5 | 1, 4 | oppr0 20252 | . . 3 ⊢ 0 = (0g‘(oppr‘𝑅)) |
| 6 | eqid 2729 | . . 3 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 7 | 3, 5, 6 | isdomn4 20619 | . 2 ⊢ ((oppr‘𝑅) ∈ Domn ↔ ((oppr‘𝑅) ∈ NzRing ∧ ∀𝑐 ∈ (𝐵 ∖ { 0 })∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑐(.r‘(oppr‘𝑅))𝑏) → 𝑎 = 𝑏))) |
| 8 | 1 | opprdomnb 20620 | . 2 ⊢ (𝑅 ∈ Domn ↔ (oppr‘𝑅) ∈ Domn) |
| 9 | 1 | opprnzrb 20424 | . . 3 ⊢ (𝑅 ∈ NzRing ↔ (oppr‘𝑅) ∈ NzRing) |
| 10 | isdomn4r.x | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
| 11 | 2, 10, 1, 6 | opprmul 20243 | . . . . . . 7 ⊢ (𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑎 · 𝑐) |
| 12 | 2, 10, 1, 6 | opprmul 20243 | . . . . . . 7 ⊢ (𝑐(.r‘(oppr‘𝑅))𝑏) = (𝑏 · 𝑐) |
| 13 | 11, 12 | eqeq12i 2747 | . . . . . 6 ⊢ ((𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑐(.r‘(oppr‘𝑅))𝑏) ↔ (𝑎 · 𝑐) = (𝑏 · 𝑐)) |
| 14 | 13 | imbi1i 349 | . . . . 5 ⊢ (((𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑐(.r‘(oppr‘𝑅))𝑏) → 𝑎 = 𝑏) ↔ ((𝑎 · 𝑐) = (𝑏 · 𝑐) → 𝑎 = 𝑏)) |
| 15 | 14 | 3ralbii 3106 | . . . 4 ⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (𝐵 ∖ { 0 })((𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑐(.r‘(oppr‘𝑅))𝑏) → 𝑎 = 𝑏) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (𝐵 ∖ { 0 })((𝑎 · 𝑐) = (𝑏 · 𝑐) → 𝑎 = 𝑏)) |
| 16 | ralrot3 3260 | . . . 4 ⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (𝐵 ∖ { 0 })((𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑐(.r‘(oppr‘𝑅))𝑏) → 𝑎 = 𝑏) ↔ ∀𝑐 ∈ (𝐵 ∖ { 0 })∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑐(.r‘(oppr‘𝑅))𝑏) → 𝑎 = 𝑏)) | |
| 17 | 15, 16 | bitr3i 277 | . . 3 ⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (𝐵 ∖ { 0 })((𝑎 · 𝑐) = (𝑏 · 𝑐) → 𝑎 = 𝑏) ↔ ∀𝑐 ∈ (𝐵 ∖ { 0 })∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑐(.r‘(oppr‘𝑅))𝑏) → 𝑎 = 𝑏)) |
| 18 | 9, 17 | anbi12i 628 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (𝐵 ∖ { 0 })((𝑎 · 𝑐) = (𝑏 · 𝑐) → 𝑎 = 𝑏)) ↔ ((oppr‘𝑅) ∈ NzRing ∧ ∀𝑐 ∈ (𝐵 ∖ { 0 })∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑐(.r‘(oppr‘𝑅))𝑎) = (𝑐(.r‘(oppr‘𝑅))𝑏) → 𝑎 = 𝑏))) |
| 19 | 7, 8, 18 | 3bitr4i 303 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (𝐵 ∖ { 0 })((𝑎 · 𝑐) = (𝑏 · 𝑐) → 𝑎 = 𝑏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3902 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 0gc0g 17361 opprcoppr 20239 NzRingcnzr 20415 Domncdomn 20595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-nzr 20416 df-domn 20598 |
| This theorem is referenced by: domnrcanb 20625 |
| Copyright terms: Public domain | W3C validator |