![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drgext0g | Structured version Visualization version GIF version |
Description: The additive neutral element of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
Ref | Expression |
---|---|
drgext.b | ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) |
drgext.1 | ⊢ (𝜑 → 𝐸 ∈ DivRing) |
drgext.2 | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) |
Ref | Expression |
---|---|
drgext0g | ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drgext.b | . . 3 ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = ((subringAlg ‘𝐸)‘𝑈)) |
3 | eqidd 2727 | . 2 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐸)) | |
4 | drgext.2 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) | |
5 | eqid 2726 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
6 | 5 | subrgss 20550 | . . 3 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐸)) |
8 | 2, 3, 7 | sralmod0 21168 | 1 ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ‘cfv 6544 Basecbs 17206 0gc0g 17447 SubRingcsubrg 20545 DivRingcdr 20701 subringAlg csra 21143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-7 12324 df-8 12325 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-plusg 17272 df-sca 17275 df-vsca 17276 df-ip 17277 df-0g 17449 df-subrg 20547 df-sra 21145 |
This theorem is referenced by: drgext0gsca 33492 fedgmullem1 33528 fedgmullem2 33529 fedgmul 33530 |
Copyright terms: Public domain | W3C validator |