Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafmulr Structured version   Visualization version   GIF version

Theorem dvafmulr 38307
Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvafmul.h 𝐻 = (LHyp‘𝐾)
dvafmul.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafmul.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvafmul.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafmul.f 𝐹 = (Scalar‘𝑈)
dvafmul.p · = (.r𝐹)
Assertion
Ref Expression
dvafmulr ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝐾,𝑠,𝑡   𝑊,𝑠,𝑡
Allowed substitution hints:   𝑇(𝑡,𝑠)   · (𝑡,𝑠)   𝑈(𝑡,𝑠)   𝐹(𝑡,𝑠)   𝐻(𝑡,𝑠)   𝑉(𝑡,𝑠)

Proof of Theorem dvafmulr
StepHypRef Expression
1 dvafmul.p . . 3 · = (.r𝐹)
2 dvafmul.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2798 . . . . 5 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
4 dvafmul.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
5 dvafmul.f . . . . 5 𝐹 = (Scalar‘𝑈)
62, 3, 4, 5dvasca 38302 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊))
76fveq2d 6649 . . 3 ((𝐾𝑉𝑊𝐻) → (.r𝐹) = (.r‘((EDRing‘𝐾)‘𝑊)))
81, 7syl5eq 2845 . 2 ((𝐾𝑉𝑊𝐻) → · = (.r‘((EDRing‘𝐾)‘𝑊)))
9 dvafmul.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 dvafmul.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
11 eqid 2798 . . 3 (.r‘((EDRing‘𝐾)‘𝑊)) = (.r‘((EDRing‘𝐾)‘𝑊))
122, 9, 10, 3, 11erngfmul 38101 . 2 ((𝐾𝑉𝑊𝐻) → (.r‘((EDRing‘𝐾)‘𝑊)) = (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡)))
138, 12eqtrd 2833 1 ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  ccom 5523  cfv 6324  cmpo 7137  .rcmulr 16558  Scalarcsca 16560  LHypclh 37280  LTrncltrn 37397  TEndoctendo 38048  EDRingcedring 38049  DVecAcdveca 38298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-edring 38053  df-dveca 38299
This theorem is referenced by:  dvamulr  38308
  Copyright terms: Public domain W3C validator