Proof of Theorem fsumdvdsdiaglem
Step | Hyp | Ref
| Expression |
1 | | breq1 5073 |
. . . 4
⊢ (𝑥 = 𝑘 → (𝑥 ∥ 𝑁 ↔ 𝑘 ∥ 𝑁)) |
2 | | elrabi 3611 |
. . . . 5
⊢ (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∈ ℕ) |
3 | 2 | ad2antll 725 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℕ) |
4 | 3 | nnzd 12354 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℤ) |
5 | | fsumdvdsdiag.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℕ) |
7 | | simprl 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
8 | | dvdsdivcl 15953 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
9 | 6, 7, 8 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
10 | | elrabi 3611 |
. . . . . . 7
⊢ ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → (𝑁 / 𝑗) ∈ ℕ) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℕ) |
12 | 11 | nnzd 12354 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℤ) |
13 | 6 | nnzd 12354 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℤ) |
14 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝑥 ∥ (𝑁 / 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗))) |
15 | 14 | elrab 3617 |
. . . . . . 7
⊢ (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∥ (𝑁 / 𝑗))) |
16 | 15 | simprbi 496 |
. . . . . 6
⊢ (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∥ (𝑁 / 𝑗)) |
17 | 16 | ad2antll 725 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∥ (𝑁 / 𝑗)) |
18 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = (𝑁 / 𝑗) → (𝑥 ∥ 𝑁 ↔ (𝑁 / 𝑗) ∥ 𝑁)) |
19 | 18 | elrab 3617 |
. . . . . . 7
⊢ ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ ((𝑁 / 𝑗) ∈ ℕ ∧ (𝑁 / 𝑗) ∥ 𝑁)) |
20 | 19 | simprbi 496 |
. . . . . 6
⊢ ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → (𝑁 / 𝑗) ∥ 𝑁) |
21 | 9, 20 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∥ 𝑁) |
22 | 4, 12, 13, 17, 21 | dvdstrd 15932 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∥ 𝑁) |
23 | 1, 3, 22 | elrabd 3619 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
24 | | breq1 5073 |
. . . 4
⊢ (𝑥 = 𝑗 → (𝑥 ∥ (𝑁 / 𝑘) ↔ 𝑗 ∥ (𝑁 / 𝑘))) |
25 | | elrabi 3611 |
. . . . 5
⊢ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → 𝑗 ∈ ℕ) |
26 | 25 | ad2antrl 724 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℕ) |
27 | 26 | nnzd 12354 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℤ) |
28 | 26 | nnne0d 11953 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ≠ 0) |
29 | | dvdsmulcr 15923 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℤ ∧ (𝑁 / 𝑗) ∈ ℤ ∧ (𝑗 ∈ ℤ ∧ 𝑗 ≠ 0)) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗))) |
30 | 4, 12, 27, 28, 29 | syl112anc 1372 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗))) |
31 | 17, 30 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗)) |
32 | 6 | nncnd 11919 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℂ) |
33 | 26 | nncnd 11919 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℂ) |
34 | 32, 33, 28 | divcan1d 11682 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = 𝑁) |
35 | 3 | nncnd 11919 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℂ) |
36 | 3 | nnne0d 11953 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ≠ 0) |
37 | 32, 35, 36 | divcan2d 11683 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · (𝑁 / 𝑘)) = 𝑁) |
38 | 34, 37 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = (𝑘 · (𝑁 / 𝑘))) |
39 | 31, 38 | breqtrd 5096 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘))) |
40 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ |
41 | | dvdsdivcl 15953 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
42 | 6, 23, 41 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
43 | 40, 42 | sselid 3915 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℕ) |
44 | 43 | nnzd 12354 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℤ) |
45 | | dvdscmulr 15922 |
. . . . . 6
⊢ ((𝑗 ∈ ℤ ∧ (𝑁 / 𝑘) ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑘 ≠ 0)) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘))) |
46 | 27, 44, 4, 36, 45 | syl112anc 1372 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘))) |
47 | 39, 46 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∥ (𝑁 / 𝑘)) |
48 | 24, 26, 47 | elrabd 3619 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) |
49 | 23, 48 | jca 511 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})) |
50 | 49 | ex 412 |
1
⊢ (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}))) |