MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsdiaglem Structured version   Visualization version   GIF version

Theorem fsumdvdsdiaglem 25868
Description: A "diagonal commutation" of divisor sums analogous to fsum0diag 15181. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
fsumdvdsdiag.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fsumdvdsdiaglem (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑁   𝜑,𝑗,𝑘
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem fsumdvdsdiaglem
StepHypRef Expression
1 breq1 5036 . . . 4 (𝑥 = 𝑘 → (𝑥𝑁𝑘𝑁))
2 elrabi 3597 . . . . 5 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∈ ℕ)
32ad2antll 729 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℕ)
43nnzd 12126 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℤ)
5 fsumdvdsdiag.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
65adantr 485 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℕ)
7 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
8 dvdsdivcl 15718 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
96, 7, 8syl2anc 588 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
10 elrabi 3597 . . . . . . 7 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 / 𝑗) ∈ ℕ)
119, 10syl 17 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℕ)
1211nnzd 12126 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℤ)
136nnzd 12126 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℤ)
14 breq1 5036 . . . . . . . 8 (𝑥 = 𝑘 → (𝑥 ∥ (𝑁 / 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
1514elrab 3603 . . . . . . 7 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∥ (𝑁 / 𝑗)))
1615simprbi 501 . . . . . 6 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∥ (𝑁 / 𝑗))
1716ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∥ (𝑁 / 𝑗))
18 breq1 5036 . . . . . . . 8 (𝑥 = (𝑁 / 𝑗) → (𝑥𝑁 ↔ (𝑁 / 𝑗) ∥ 𝑁))
1918elrab 3603 . . . . . . 7 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝑗) ∈ ℕ ∧ (𝑁 / 𝑗) ∥ 𝑁))
2019simprbi 501 . . . . . 6 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 / 𝑗) ∥ 𝑁)
219, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∥ 𝑁)
224, 12, 13, 17, 21dvdstrd 15697 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘𝑁)
231, 3, 22elrabd 3605 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
24 breq1 5036 . . . 4 (𝑥 = 𝑗 → (𝑥 ∥ (𝑁 / 𝑘) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
25 elrabi 3597 . . . . 5 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑗 ∈ ℕ)
2625ad2antrl 728 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℕ)
2726nnzd 12126 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℤ)
2826nnne0d 11725 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ≠ 0)
29 dvdsmulcr 15688 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ (𝑁 / 𝑗) ∈ ℤ ∧ (𝑗 ∈ ℤ ∧ 𝑗 ≠ 0)) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
304, 12, 27, 28, 29syl112anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
3117, 30mpbird 260 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗))
326nncnd 11691 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℂ)
3326nncnd 11691 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℂ)
3432, 33, 28divcan1d 11456 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = 𝑁)
353nncnd 11691 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℂ)
363nnne0d 11725 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ≠ 0)
3732, 35, 36divcan2d 11457 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · (𝑁 / 𝑘)) = 𝑁)
3834, 37eqtr4d 2797 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = (𝑘 · (𝑁 / 𝑘)))
3931, 38breqtrd 5059 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)))
40 ssrab2 3985 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
41 dvdsdivcl 15718 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
426, 23, 41syl2anc 588 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4340, 42sseldi 3891 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℕ)
4443nnzd 12126 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℤ)
45 dvdscmulr 15687 . . . . . 6 ((𝑗 ∈ ℤ ∧ (𝑁 / 𝑘) ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑘 ≠ 0)) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
4627, 44, 4, 36, 45syl112anc 1372 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
4739, 46mpbid 235 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∥ (𝑁 / 𝑘))
4824, 26, 47elrabd 3605 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
4923, 48jca 516 . 2 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}))
5049ex 417 1 (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  wcel 2112  wne 2952  {crab 3075   class class class wbr 5033  (class class class)co 7151  0cc0 10576   · cmul 10581   / cdiv 11336  cn 11675  cz 12021  cdvds 15656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-n0 11936  df-z 12022  df-dvds 15657
This theorem is referenced by:  fsumdvdsdiag  25869  fsumdvdscom  25870
  Copyright terms: Public domain W3C validator