MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsdiaglem Structured version   Visualization version   GIF version

Theorem fsumdvdsdiaglem 27118
Description: A "diagonal commutation" of divisor sums analogous to fsum0diag 15681. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
fsumdvdsdiag.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fsumdvdsdiaglem (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑁   𝜑,𝑗,𝑘
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem fsumdvdsdiaglem
StepHypRef Expression
1 breq1 5094 . . . 4 (𝑥 = 𝑘 → (𝑥𝑁𝑘𝑁))
2 elrabi 3643 . . . . 5 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∈ ℕ)
32ad2antll 729 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℕ)
43nnzd 12492 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℤ)
5 fsumdvdsdiag.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
65adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℕ)
7 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
8 dvdsdivcl 16224 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
96, 7, 8syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
10 elrabi 3643 . . . . . . 7 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 / 𝑗) ∈ ℕ)
119, 10syl 17 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℕ)
1211nnzd 12492 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℤ)
136nnzd 12492 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℤ)
14 breq1 5094 . . . . . . . 8 (𝑥 = 𝑘 → (𝑥 ∥ (𝑁 / 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
1514elrab 3647 . . . . . . 7 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∥ (𝑁 / 𝑗)))
1615simprbi 496 . . . . . 6 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∥ (𝑁 / 𝑗))
1716ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∥ (𝑁 / 𝑗))
18 breq1 5094 . . . . . . . 8 (𝑥 = (𝑁 / 𝑗) → (𝑥𝑁 ↔ (𝑁 / 𝑗) ∥ 𝑁))
1918elrab 3647 . . . . . . 7 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝑗) ∈ ℕ ∧ (𝑁 / 𝑗) ∥ 𝑁))
2019simprbi 496 . . . . . 6 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 / 𝑗) ∥ 𝑁)
219, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∥ 𝑁)
224, 12, 13, 17, 21dvdstrd 16203 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘𝑁)
231, 3, 22elrabd 3649 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
24 breq1 5094 . . . 4 (𝑥 = 𝑗 → (𝑥 ∥ (𝑁 / 𝑘) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
25 elrabi 3643 . . . . 5 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑗 ∈ ℕ)
2625ad2antrl 728 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℕ)
2726nnzd 12492 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℤ)
2826nnne0d 12172 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ≠ 0)
29 dvdsmulcr 16193 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ (𝑁 / 𝑗) ∈ ℤ ∧ (𝑗 ∈ ℤ ∧ 𝑗 ≠ 0)) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
304, 12, 27, 28, 29syl112anc 1376 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
3117, 30mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗))
326nncnd 12138 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℂ)
3326nncnd 12138 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℂ)
3432, 33, 28divcan1d 11895 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = 𝑁)
353nncnd 12138 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℂ)
363nnne0d 12172 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ≠ 0)
3732, 35, 36divcan2d 11896 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · (𝑁 / 𝑘)) = 𝑁)
3834, 37eqtr4d 2769 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = (𝑘 · (𝑁 / 𝑘)))
3931, 38breqtrd 5117 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)))
40 ssrab2 4030 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
41 dvdsdivcl 16224 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
426, 23, 41syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4340, 42sselid 3932 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℕ)
4443nnzd 12492 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℤ)
45 dvdscmulr 16192 . . . . . 6 ((𝑗 ∈ ℤ ∧ (𝑁 / 𝑘) ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑘 ≠ 0)) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
4627, 44, 4, 36, 45syl112anc 1376 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
4739, 46mpbid 232 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∥ (𝑁 / 𝑘))
4824, 26, 47elrabd 3649 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
4923, 48jca 511 . 2 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}))
5049ex 412 1 (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wne 2928  {crab 3395   class class class wbr 5091  (class class class)co 7346  0cc0 11003   · cmul 11008   / cdiv 11771  cn 12122  cz 12465  cdvds 16160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-dvds 16161
This theorem is referenced by:  fsumdvdsdiag  27119  fsumdvdscom  27120
  Copyright terms: Public domain W3C validator